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Fig. 15. (A) Chemical structure of SKLLB1002. (B) SKL.LB1002 is docked into the active site of VEGFR2, showing interactions between SKLLB1002 and
VEGFR2 by using the in silico model. (C) A 2D interaction map of SKLB1002 and VEGFR2. Adapted from Zhang et al. (2011).

that incorporating protein flexibility in ligand docking
is essential.

GPCRs play a central role in human physiology and
are prime targets for drug discovery for different
indications such as cardiovascular, metabolic, neuro-
degenerative, and oncologic diseases. High-resolution
crystal structures of GPCRs have become available
only recently and are sparse. de Graaf and Rognan
(2009) studied the effect of template choice on docking.
The results indicate that multiple-template-based mod-
els performed slightly better than single-template
models if all templates shared low sequence identity
with the target. Fragment-based methods like
I-TASSER (Zhang, 2008) have performed well in CASP.
I-TASSER takes a hierarchical approach to homology
modeling by using fragments from template structures
and assembling multiple fragments based on threading
alignment. Ligand-induced homology modeling using
LiBERO (Katritch et al., 2010) has shown promise in
terms of percentage of correctly predicted native con-
tacts. MD refinement of homology models of GPCRs has
demonstrated benefits (Yarnitzky et al., 2010). The
accurate modeling of extracellular loops is essential
because they are important for ligand recognition as has
been demonstrated by several site-directed mutagenesis
studies (Bokoch et al., 2010). Although considerable

progress has been made in de novo loop modeling,
loopless models provide practical alternatives in cases
where de novo modeling fails. de Graaf et al. (2008) re-
commended loopless models of GPCRs for virtual
screening unless high homology targets or receptor
specific data were available. Finally, receptor ensemble
docking studies have shown promising results compared
with one binding site conformation in terms of signifi-
cant improvement in virtual screening yields (Vilar
et al,, 2011).

III1. Ligand-Based Computer-Aided Drug Design

The ligand-based computer-aided drug discovery
(LB-CADD) approach involves the analysis of ligands
known to interact with a target of interest. These
methods use a set of reference structures collected from
compounds known to interact with the target of
interest and analyze their 2D or 3D structures. The
overall goal is to represent these compounds in such
a way that the physicochemical properties most im-
portant for their desired interactions are retained,
whereas extraneous information not relevant to the
interactions is discarded. It is considered an indirect
approach to drug discovery in that it does not necessitate
knowledge of the structure of the target of interest. The
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two fundamental approaches of LB-CADD are (1) se-
lection of compounds based on chemical similarity to
known actives using some similarity measure or (2) the
construction of a QSAR model that predicts biologic
activity from chemical structure. The difference between
the two approaches is that the latter weights the features
of the chemical structure according to their influence on
the biologic activity of interest, whereas the former does
not. The methods are applied for in silico screening for
novel compounds possessing the biologic activity of
interest, hit-to-lead and lead-to drug optimization, and
also for the optimization of DMPK/ADMET properties.
LB-CADD is based on the Similar Property Principle,
published by Johnson et al. (1990), which states that
molecules that are structurally similar are likely to have
similar properties. LB-CADD approaches in contrast to
SB-CADD approaches can also be applied when the
structure of the biologic target is unknown. Addition-
ally, active compounds identified by ligand-based vir-
tual high-throughput screening (LB-vHTS) methods are
often more potent than those identified in SB-vHTS
(Stumpfe et al., 2012).

A. Molecular Descriptors/Features

LB-CADD techniques use different methods for
describing features of small molecules using computa-
tional algorithms that balance efficiency and informa-
tion content. The optimal descriptor set depends on the
biologic function predicted as well as on the LB-CADD
technique used, and therefore many different algo-
rithms for deriving chemical information have been
developed and used. Molecular descriptors can be struc-
tural as well as physicochemical and can be described on
multiple levels of increasing complexity. Information
described can include properties such as molecular
weight, geometry, volume, surface areas, ring content,
rotatable bonds, interatomic distances, bond distan-
ces, atom types, planar and nonplanar systems, mole-
cular walk counts, electronegativities, polarizabilities,
symmetry, atom distribution, topological charge in-
dices, functional group composition, aromaticity in-
dices, solvation properties, and many others (Cramer
et al., 1988; Randic, 1995; Schuur et al., 1996; Bravi
et al., 1997; Hemmer et al., 1999; Pearlman and
Smith, 1999; Hong et al., 2008; Roberto Todeschini,
2010). These descriptors are generated through
knowledge-based, graph-theoretical methods, molecular-
mechanical, or quantum-mechanical tools (Acharya et al.,
2011; Marrero-Ponce et al.,, 2012) and are classified
according to the “dimensionality” of the chemical re-
presentation from which they are computed (Ekins et al.,
2007): 1D, scalar physicochemical properties such as
molecular weight; 2D, molecular constitution-derived
descriptors; 2.5D, molecular configuration-derived descrip-
tors; 3D, molecular conformation-derived descriptors.
These different levels of complexity, however, are over-
lapping with the more complex descriptors, often
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incorporating information from the simpler ones. For
example, many 2D and 3D descriptors use physicochem-
ical properties to weight their functions and to describe
the overall distribution of these properties.

1. Functional Groups. Functional groups are de-
fined by the International Union of Pure and Applied
Chemistry as atoms or groups of atoms that have
similar chemical properties across different compounds.
These groups are attached to a central backbone of the
molecule, also called scaffold or chemotype. The spatial
positioning of the functional groups achieved by the
backbone defines the physical and chemical properties
of compounds. Therefore, the location and nature of
functional groups for a given compound contain key
information for most ligand-based CADD methods.
There are many different kinds of functional groups
including those that contain hydrocarbons, halogens,
oxygens, nitrogens, sulfur, phosphorous, etc. Func-
tional groups include alcohols, esters, amides, carbox-
ylates, ethers, nitro group, thiols, etc. (March, 1977)

Functional groups can either be described explicitly
by their atomic composition and bonding or may be
implicitly encoded by their general properties. For
example, under physiologic conditions carboxyl groups
are often negatively charged, whereas amine groups
are positively charged. This property is accurately
reflected in the structure of the functional group but
also in the charge computed from that structure.
Because it is the properties conferred by the functional
groups that are most important to the biochemical
activity of a given compound, many CADD applications
treat functional groups containing different atoms
but conferring the same properties as similar or even
identical. For example, the capacity for hydrogen
bonding can heavily influence a molecule’s properties.
These interactions frequently occur between a hydro-
gen atom and an electron donor such as oxygen or
nitrogen. Hydrogen bonding interactions influence the
electron distribution of neighboring atoms and the
site’s reactivity, making it an important functional
property for therapeutic design. Commonly, hydrogen
bonding groups are separated as hydrogen bond donors
with strong electron-withdrawing substituents (OH,
NH, SH, and CH) and hydrogen bond acceptor groups
(PO, SO, CO, N, O, and S) (Pimentel and McClellan,
1960; Vinogradov and Linnell, 1971). The applications
Phase, Catalyst, DISCO, and GASP (Genetic Algo-
rithm Superposition Program) as well as Pharmaco-
phore mapping algorithms discussed in greater detail
below focus primarily on hydrogen-bond donors,
hydrogen-bond acceptors, hydrophobic regions, ion-
izable groups, and aromatic rings.

2. Prediction of Psychochemical Properties. Descriptors
within the same dimensionality can show a range of
complexity. The simplest ones, such as molecular
weight and number of hydrogen bond donors, are
relatively simple to compute. These can be rapidly
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and accurately computed. More complex descriptors
such as solubility and partial charge are more difficult
to compute. However, the higher information content
provided by these descriptors makes them extremely
useful for model development. (Zhou et al., 2010).
Therefore, prediction of physicochemical properties
is a critical step in developing effective molecular
descriptors. The trade-off in computing such descriptors
is between the high speed needed to encode thousands
of molecules and sufficient accuracy.

a. Electronegativity and partial charge. Electron
distribution plays an important role in a molecule’s
properties and activities. Therefore, it was important
to develop a descriptor that is capable of modeling the
charge distribution over an entire molecule. A useful
form of this descriptor was to assign a partial charge to
all atoms in a molecule. Initially, electron distribution
could be assigned to individual atoms through quan-
tum mechanical calculations. However, when screen-
ing thousands or millions of compounds, a much faster
and more efficient method is necessary. Gasteiger and
Marsili (1980) developed a method for assigning partial
charges to individual atoms called the Partial Equal-
ization of Orbital Electronegativity (PEOE). This
method is based on a definition of electronegativity in-
troduced by Mulliken (1934) that relates electronega-
tivity of an atom to its ionization potential I and
electron affinity E with the equation electronegativity
= 1/20 + E). The values for E and I depend on the
valence state of the atom, and Hinze and Jaffe (1962)
and Hinze et al. (1963) introduced the concept of orbital
electronegativity, which was capable of defining elec-
tronegativity of a specific orbital in a given valence
state. Orbital electronegativities depend on hybridiza-
tion and occupation number of the orbital.

Electronegativity equalization was proposed by
Sanderson (1951, 1960) and stated that bonded atoms
changed electron density until total equalization of
electronegativity was reached. However, this simple
model led to chemically unacceptable calculations. The
PEOE method is an improvement to this electroneg-
ativity equalization model that produces more ap-
propriate results by adding some complexity to the
equalization of electronegativities. Gasteiger and Mar-
sili (1980) first introduced an approximation function
that joins the electronegativity values of an atom in its
anionic, neutral, and cationic state with appropriate
ionization potentials and electron affinities and relates
orbital occupation with orbital electronegativity. They
also added a damping function to account for the fact
that when charge transfer is occurring an electrostatic
field is generated, inhibiting further electron transfer
and preventing a complete equalization. Finally, they
introduced an iterative procedure to account for the fact
that modified electronegativities after charge transfer
give rise to new charge separations. Progressive iterations
included wider spheres of neighboring atoms until the
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total transfer dropped below a cutoff. The total charge of
an atom is then calculated as the sum of the individual
charge transfers after the iteration.

For small-member rings, special bonds based on the
valence bond model (Coulson and Moffitt, 1947) were
used as additional parameters in the PEOE method
(Guillen and Gasteiger, 1983). The valence bond model
states that the bonds of three- and four-membered ring
systems arise from orbitals with varying amounts of s
and p character depending on the type and number of
rings involved and whether exo- or endocyclic bonds
are considered. The extra coefficients provided charge
dependence for the different hybridization states in-
terpolated from the values of electronegativities for
sp®, sp?, sp, and p states (Hinze and Jaffe, 1962).

Gasteiger and Saller (1985) introduced a method for
applying the PEOE method to molecules with multiple
resonance structures. Charge distribution in 7 systems
could be calculated on the basis of resonance structure
weights. These weights were calculated by including
a topological weight and electronic weight. The topolog-
ical weight was based on whether resonance structures
involved the loss of covalent bonds, decrease in aromatic
systems, or charge separation. The electronic weight was
based on the idea that resonance structures are more
important when a negative charge is localized on the
more strongly electronegative atom. Therefore, it was
a measure of how well the donor atom can donate its lone
pair of electrons and how stable is a negative charge on
the acceptor atom. To calculate this weight, the el-
ectronegativity concept is applied. Finally, by adding the
changes in charge of the individual resonance structures
to the scaling factor the charge distribution could be
calculated. Orbital electronegatives are often imple-
mented into o and 7 bond systems. Standard connection
tables describe localized connections between two atoms
that contain twice the number of electrons per bond
order (single bonds contain two electrons, double bonds
contain four, etc.). This valence bond structure, however,
is insufficient to describe some compounds and to
distinguish between the different excited states of a
molecule. Separating o and = electrons has been
shown to be advantageous to this representation scheme
(Gasteiger, 1979). Bauershmidt and Gasteiger (1997)
describe computational representation of chemical spe-
cies using three electron systems: o-electron systems,
mr-electron systems, and coordinative bonds.

o-Electron systems contain electrons localized in the
o part of a bond and single bond electrons. These
systems may consist of more than two atoms when
multicenter bonds are described, including overlapping
orbitals that point into a central region between bonded
atoms and open bridging a-electron systems where one
atom is located between the other atoms part of the
same system. 7-Electron systems encode free electrons.
One mr-electron system is generated for each electron
pair. For example, the electrons of a triple bond are
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distributed into one o-electron system and two m-elec-
tron systems, each with two electrons. Properties such
as orbital electronegativity and partial charges are more
accurately described using the o- and m-electron sys-
tems. Therefore, it is common to implement descriptors
separated as o charges, 7 charges, o electronegativity,
and 7 electronegativity.

These methods provide a means to quantitatively
calculate electronegativity and partial charge on a per-
atom basis without the need for quantum mechanics.
PEOE charges have been shown to be useful in-
formation for predicting chemical properties such as
taste (Belitz et al., 1979). Additionally, these properties
are often used to weight three-dimensional descriptors
that would, on their own, only capture purely struc-
tural information. By weighting these descriptors with
these properties, information regarding the three-
dimensional distribution of electrons is available.

b. Polarizability. Effective polarizability or mean
molecular polarizability is another widely used molec-
ular descriptor. It quantifies the response of electron
density to an external field to give an induced dipole
moment (Le Fevre, 1965). Polarizability contributes to
dispersion forces and influences intermolecular inter-
actions (a fast empirical method for the calculation of
molecular polarizability). Brauman and Blair (1968)
described stabilization effects of substituent polariz-
ability. For example, induced dipole moments in un-
substituted alkyl groups are believed to stabilize
charges in gaseous ions formed by protonation or de-
protonation (Gasteiger and Hutchings, 1984). The
magnitude of the induced dipole is calculated as the
product of the electric field operator and the polariz-
ability tensor of the molecule. The average polarizabil-
ity of a molecule is calculated as the average of the
three principal components of this tensor (Glen, 1994).

Miller and Savchik (1979) introduced a formula for
calculation of mean molecular polarizabilities using
a polarizability contribution for each atom based on its
atom type and hybridization state and the total number
of electrons in the molecule. Gasteiger and Hutchings
(1983) improved this formula to account for the at-
tenuation of substituent influence. This was accom-
plished through the introduction of a damping factor
dependent on the distance in bonds between the atom
and the charged reaction center.

Glen (1994) defined a method for calculating static
molecular polarizability using a modified calculation of
atomic nuclear screening constants based on effective
nuclear charge described by Slater (1930). This calcula-
tion divides electrons into different groups with different
shielding constants. These shielding constants reflect
the fact that inner-shell electrons modify the view of the
nucleus for outer-shell electrons and adjust the field of
nuclear charge for each group of electrons.

c. Octanol/water partition coefficient. LogP (loga-
rithm of partition coefficient between n-octanol and
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water) is an important molecular descriptor that has
been widely used in QSAR since the work of Leo et al.
(1971). Lipinksi’s rule of five, a class set of rules des-
cribing the “druggability” of a compound, includes mea-
surement of the compound’s logP. Traditionally, logP can
be calculated experimentally by measuring its partition-
ing behavior in the insoluble mixture of n-octanol and
water and reflects the molecule’s hydrophobicity. This
molecular property has been shown to be important in
solubility, oral availability, transport, penetration of
the blood-brain-barrier, receptor binding, and toxicity
(Hansch et al., 1962, 1987). For virtual screening
applications, several methods for calculating logP based
on molecular constitution have been established.

LogP calculations largely rely on an additive method
introduced by Rekker and Mannhold (1992) in which
the contributions to logP by basic fragments of a mo-
lecule (atoms and functional groups) are summed. Ad-
ditivity methods improved with the incorporation of
molecular properties have also been used to calculate
logP (Kellogg et al., 1991; Meng et al., 1994).

Wang et al. (1997) developed the very popular
additivity method called XLOGP. This method origi-
nally defined 80 basic atom types for carbon, nitrogen,
oxygen, sulfur, phosphorous, and halogen atoms. Hy-
drogen atoms are implicitly included in the different
atom types. Additionally, correction factors were applied
to account for specific intramolecular interactions that
can affect a molecule’s logP beyond each of the frag-
ments on their own. This method was later improved to
include 90 atom types and 10 correction factors (Wang
et al., 2000a).

Correction factors were necessary and determined
empirically due to the fact that many logP calculations
based on simple summations were incorrect. For
example, compounds with long hydrocarbon chains
had underestimated logP because of their flexibility and
aggregation behavior, atoms bonded to two or more
halogen atoms had altered properties due to dipole
shielding, internal hydrogen bonding, the unusually
strong internal hydrogen bonding with salicylic acids,
and the existence of a-amino acids as zwitterions. Ad-
ditionally, correction factors are included for aromatic
nitrogen pairs, ortho sp® oxygen pairs, para donor
pairs, sp? oxygen pairs, and amino sulfonic acids.

Xing and Glen (2002) introduced an alternative logP
calculation that was based on the evidence that
molecular size and hydrogen-bonding ability account
for a major part of logP. They created a statistical model
by combining molecular size and dispersion interactions
using molecular polarizability and the sum of squared
partial atomic charges on oxygen and nitrogen atoms.
The final model showed that molecular polarizability is
more significant than atomic charges and that an in-
crease in polarizability is correlated with an increase in
logP, whereas a decrease in charge densities on nitrogen
and oxygen correlated with a decrease in logP. They
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theorized that the importance of molecular polarizabil-
ity on logP was due in part to the relative energy
required for a larger molecule to create a cavity in water
or octanol.

3. Converting Properties into Descriptors. Molecule
properties are converted into numerical vectors of
descriptors for analysis. This conversion is needed to
ensure that descriptions of molecules have a constant
length independent of size. Each position in the vector
of descriptors encodes a well-defined property or
feature that facilitates comparison by mathematical
algorithms.

a. Binary molecular fingerprints. Fingerprints are
bit string representations of molecular structure and/or
properties (Bajorath 2001, 2002). They encode various
molecular descriptors as predefined bit settings (Auer
and Bajorath, 2008), i.e., representation as 1 or 0, where
1 means descriptor is present or O if not. This allows
chemical identity to be unambiguously assigned by the
presence or absence of features (Hutter, 2011). The
features described in a molecular fingerprint can vary in
number and complexity (from hundreds of bits for
structural fragments to thousands for connectivity finger-
prints and millions for the complex pharmacophore-like
fingerprints) (Auer and Bajorath, 2008), depending on
the computational resources available and the intended
application. Fingerprints that rely solely on interatomic
connectivity, i.e., molecular constitution, are known as
2D fingerprints (Hutter, 2011). In the prototypic 2D
keyed fingerprint design, each bit position is associated
with the presence or absence of a specific substructure
pattern, for example carbonyl group attached to sp®
carbon, hydroxyl group attached to sp® carbon, etc.
(Barnard and Downs, 1997).

Molecular structure itself comprises several levels of
organization between the atoms within a molecule,
and, therefore, fingerprints may differ in their levels of
organization too. For example, the simplest fingerprint
may contain the information that a given compound
contains six carbon atoms and six hydrogen atoms.
However, up to 217 different isomers can contain this
fingerprint. Adding connectivity increases the specific-
ity of the fingerprints but does not necessarily provide
discrimination between stereoisomers. These molecules
are not identical despite having equal constitutions and
2D fingerprints that are insufficient to describe their
structures. Therefore, considerable effort is taken to
ensure the efficient application of fingerprints without
sacrificing important molecular characteristics. One ex-
tension to fingerprints is the use of hash codes. These
are bit strings of fixed length that contain information
about connectivity, stereo centers, isotope labeling, and
further properties. This information is then compressed
to avoid redundancies (Ihlenfeldt and Gasteiger, 1994).
Unfortunately, it is not always obvious which of these
characteristics are important in a given context and
which are not (Hutter, 2011).
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Commonly used fingerprints include the ISIS (In-
tegrated Scientific Information System) keys with 166
bits and the MDL (Molecular Design Limited) MACCS
(Molecular ACCess System) keys (Durant et al., 2002)
with 960 bits. The ISIS keys are small topological
substructure fragments, whereas the MACCS keys
consist of the ISIS keys plus algorithmically generated
more abstract atom-pair descriptors. MDL keys are
commonly used when optimizing diversity (McGregor
and Pallai, 1997; Roberto Todeschini, 2010). For exam-
ple, the PubChem data base uses a fingerprint that is
881 bits long to rank substances against a query
compound. This fingerprint is comprised of the number
and type of elements, ring systems (saturated and un-
saturated up to a size of 10), pairwise atom combina-
tions, sequences, and substructures (Hutter, 2011).

b. 2D description of molecular constitution. 2D
descriptors can be computed solely from the constitution
or topology of a molecule, whereas 3D descriptors are
obtained from the 3D structure of the molecule (Ekins
et al., 2007). Many 2D molecular descriptors are based
on molecular topology derived from graph-theoretical
methods. Topological indices treat all atoms in a mole-
cule as vertices and index-specific information for all
pairs of vertices. A simple topological index, for ex-
ample, will contain only constitutional information such
as which atoms are directly bound to each other. This is
known as an adjacency matrix and an entry of 1 for
vertices v; and v;j if their corresponding atoms are
bonded, and an entry of O for v; and v; indicates that the
corresponding atoms are not directly bonded (Trinajstic,
1992). For an adjacency matrix, the sum of all entries is
equal to twice the total number of bonds in the molecule.

Complex topological indices are created by performing
specific operations to an adjacency matrix that allow for
the encoding of more complex constitutional information.
These indices are based on local graph invariants that
can represent atoms independent of their initial vertex
numbering (Devillers and Balaban, 1999). For example,
topological indices may contain entries for the number of
bonds linking the vertices. Information gathered from
such an index can include the number of bonds linking
all pairs of atoms and the number of distinct ways a path
can be superimposed on the molecular graph. A topo-
logical index that includes information such as heter-
oatoms and multiple bonds through the weighting of
vertices and edges was introduced by Bertz (1983).
Randic and Basak (2001) introduced an augmented
adjacency matrix by replacing the zero diagonal entries
(where v; = vj)) with empirically obtained atomic
properties. This adjacency matrix includes atom type
information as well as connectivity (Randic and Basak,
2001). Topological indices that describe the molecular
charge distribution as evaluated by charge transfers
between pairs of atoms and global charge transfers have
also been developed (Galvez et al., 1994, 1995). Addi-
tionally, topological indices known as geometrical indices
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have been derived to describe molecular shape. For
example, the shape index E measures how elongated is
the molecular graph (Galvez et al., 1995, 1998).
Statistical methods such as linear discriminant analysis
are often applied to topological indices and biologic pro-
perties to create predictive descriptors relating indices to
molecular activity (Galvez et al., 1994, 1995).

Topological autocorrelation (2D autocorrelation) is
designed to represent the structural information of
a molecular diagram as a fixed-length vector that can be
applied to molecules of any shape or size. It encodes the
constitutional information as well as atom property
distribution by analyzing the distances between all
pairs of atoms. Topological autocorrelations are inde-
pendent of conformational flexibility because all dis-
tances are measured as the shortest path of bonds
between the two atoms. The autocorrelation vector is
created by summing all products for atom pairs within
increasing distance intervals in terms of number of
bonds. In other words, it creates a frequency plot for
a specific range of atom pair distances. By including
atom property coefficients for all atom pairs, autocorre-
lations are capable of plotting the arrangement of
specific atom properties. For example, information such
as the frequency at which two negatively charged atoms
are three bonds apart versus four bonds apart is stored
in an autocorrelation plot that has been weighted by
partial atomic charge (Moreau and Broto, 1980).

¢. 8D Description of molecular configuration and
conformation. The physicochemical meaning of topo-
logical indices and autocorrelations is unclear and
incapable of representing some qualities that are in-
herently three-dimensional (stereochemistry). 3D molec-
ular descriptors were developed to address some of these
issues (Kubinyi., 1998).

The 3D autocorrelation is similar to the 2D autocor-
relation but measures distances between atoms as
Euclidian distances between their 3D coordinates in
space. This allows a continuous measure of distances
and encodes the spatial distribution of physicochemical
properties. Instead of summing all pairs within discrete
shortest path differences, the pairs are summed into
interval steps (Broto et al., 1984).

Radial distribution functions (RDFs) is another very
popular 3D descriptor. It maps the probability distri-
bution to find an atom in a spherical volume of radius
r. In its simplest form, the RDF maps the interatomic
distances within the entire molecule. Often it is com-
bined with characteristic atom properties to fit the re-
quirements of the information to be represented
(Hemmer et al., 1999). RDFs not only provide informa-
tion regarding interatomic distances between atoms and
properties, they reflect other information such as bond
distances, ring types, and planar versus nonplanar
molecules. These functions allow estimation of molecular
flexibility through the use of a “fuzziness” coefficient that
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extends the width of all peaks to allow for small changes
in interatomic distances.

GRIND (Grid-Independent Descriptor) is another
3D descriptor that does not require prior alignment
(Pastor et al., 2000). This set of descriptors was designed
to retain characteristics that could be directly traced to
the molecules themselves, rather than producing purely
mathematical descriptors that are not obviously related
to the molecular structures they describe. GRIND is
comprised of three steps. The first step is to calculate
a molecular-interaction field (MIF). The MIF is calcu-
lated using probes with different chemical properties to
scan the molecule and identify regions showing favor-
able interaction energy (Goodford, 1985).

The initial MIFs generated may contain up to
100,000 nodes. Therefore, the second step of GRIND
reduces this set of nodes to focused regions of greatest
favorable interaction energies. Initial implementation
of GRIND used a Fedorov-like optimization algorithm
(Fedorov, 1972) to reduce the number of nodes to
several hundred by considering both the intensity of a
field and the mutual node-node distances between the
selected nodes. In the second iteration of GRIND
(GRIND-2), this method was replaced with a new
algorithm called AMANDA (Duran et al.,, 2008).
Although the original GRIND requires users to define
the number of nodes to extract per molecule, AMANDA
allows GRIND-2 to automatically adjust the number of
nodes per compound. After a prefiltering step in which
all nodes failing an energy cutoff are removed, every
atom in the molecule is assigned a set of nodes and the
number of nodes to extract per atom is calculated
using a weighting factor and function that automatically
assigns more nodes to larger regions. The node selection
uses a recursive technique that is designed to initially
assign selection weight to energy values. As the
iterations continue through lower energy nodes, how-
ever, the internode distances become more important
than the individual energy score of each node.

The final step of GRIND-2 (and GRIND) encodes this
set of nodes into descriptors using auto- and cross-
correlation methods. Pairs of interaction energies are
multiplied and only the greatest product is retained for
each internode distance. This is called maximum auto-
and cross-correlation and allows for GRIND-2 (and
GRIND) to contain information that directly correlates
with the initial molecular structure.

GRIND-PP (Duran et al., 2009) improves GRIND-2 by
removing much of the inherent repetition in the cal-
culated descriptors. Structural features are repeated
across many GRIND-2 variables and this can artificially
assign importance to some structural features while
reducing computational efficiency (Pastor, 2006). Prin-
ciple properties replace the original variables in GRIND
and are calculated using principle component analysis.
These variables are linear combinations of the original
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variables selected to explain as much of the variance in
the original set of variables as possible.

Comparative field molecular analysis (CoMFA)
(Cramer et al., 1988) is a 3D-QSAR technique that
aligns molecules and extracts aligned features that can
be related to biologic activity. This method focuses on
the alignment of molecular interaction fields rather
than the features of each individual atom. CoMFA was
established over 20 years ago as a standard technique
for constructing 3D models in the absence of direct
structural data of the target. In this method, molecules
are aligned based on their 3D structures on a grid and
the values of steric (Van der Waals interactions) and
electrostatic potential energies (Coulombic interactions)
are calculated at each grid point. Comparative molec-
ular similarity indices (CoMSIA) is an important
extension to CoMFA. In CoMSIA, the molecular field
includes hydrophobic and hydrogen-bonding terms in
addition to the steric and Coulombic contributions.
Similarity indices are calculated instead of interaction
energies by comparing each ligand with a common
probe and Gaussian-type functions are used to avoid
extreme values (Klebe et al., 1994). One important
limitation to these methods, however, is that their
applicability is limited to static structures of similar
scaffolds while neglecting the dynamical nature of the
ligands (Acharya et al., 2011).

B. Molecular Fingerprint and Similarity Searches

Molecular fingerprint-based techniques attempt to
represent molecules in such a way as to allow rapid
structural comparison in an effort to identify structur-
ally similar molecules or to cluster collections based on
structural similarity. These methods are less hypoth-
esis driven and less computationally expensive than
pharmacophore mapping or QSAR models (see sections
II1.C and II1.E). They rely entirely on chemical structure
and omit compound known biologic activity, making the
approach more qualitative in nature than other LB-
CADD approaches (Auer and Bajorath, 2008). Addition-
ally, fingerprint-based methods consider all parts of the
molecule equally and avoid focusing only on parts of
a molecule that are thought to be most important for
activity. This is less error prone to overfitting and
requires smaller datasets to begin with. However, model
performance suffers from the influence of unnecessary
features and the often narrow chemical space evaluated
(Auer and Bajorath, 2008). Despite this drawback, 2D
fingerprints continue to be the representation of choice
for similarity-based virtual screening (Willett, 2006). Not
only are these methods the computationally least ex-
pensive way to compare molecular structures (Hutter,
2011), but their effectiveness has been demonstrated in
many comparative studies (Willett, 2006).

1. Similarity Searches in LB-CADD. Fingerprint
methods may be used to search data bases for compounds
similar in structure to a lead query, providing an
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extended collection of compounds that can be tested
for improved activity over the lead. In many sit-
uations, 2D similarity searches of data bases are
performed using chemotype information from first
generation hits, leading to modifications that can be
evaluated computationally or ordered for in vitro
testing (Talele et al., 2010). Bologa et al. (2006) used
2D fingerprint and 3D shape-similarity searches to
identify novel agonists of the estradiol receptor family
receptor GPR30. Estrogen is an important hormone
responsible for many aspects of development of physi-
ology of tissues (Hall et al., 2001; Osborne and Schiff,
2005). The GPCR GPR30 has recently been shown to
bind estrogen with high affinity and its specific role in
estrogen-regulated signaling is being studied (Revankar
et al., 2005). This group used virtual screening to
identify compounds selective for GPR30 that could be
used to study this target. 10,000 molecules provided by
Chemical Diversity Laboratories were enriched with
GPCR binding ligands and screened for fingerprint-
based similarity to the reference molecule 178-estradiol.
Fingerprints used were Daylight and MDL and simi-
larities were scored using Tanimoto and Tversky
scores. The top 100 ranked hits were selected for
biologic testing and a first-in-class selective agonist
with a K; of 11 nM for GPR30 was discovered (Bologa
et al., 2006).

Stumpfe et al. (2010) used SecinH3 and analogs as
reference compounds for a combined fingerprint and
fingerprint-based support vector machine modeling
screen aimed at inhibitors targeting the multifunc-
tional cytohesins. Cytohesins are small guanine nucle-
otide exchange factors that stimulate Ras-like GTPases,
which control various regulatory networks implicated in
a variety of diseases (Klarlund et al., 1997; Ogasawara
et al., 2000; Fuss et al., 2006). For example, cytohesin-1
has been shown to be involved in MAPK signaling in
tumor cell proliferation and T-helper cell activation
(Kliche et al., 2001; Perez et al., 2003), and cytohesin-3
was identified as an essential component of the pho-
sphatidylinositol 3-kinase-based insulin signaling in
liver cells (Fuss et al., 2006; Hafner et al., 2006). The
group screened approximately 2.6 million compounds in
the ZINC data base (Irwin and Shoichet, 2005), and the
top 145 candidates were selected for biologic testing. Of
those tested, 40 compounds showed measurable activ-
ity, and 26 were more potent than SecinH3 (Stumpfe
et al., 2010).

Ijjaali et al. (2007) created 2D pharmacophoric fin-
gerprints using a query dataset of 19 published T-type
calcium channel blockers. T-type calcium channels
underlie the generation of rhythmical firing patters
in the central nervous system and have been impli-
cated in the pathologies of epilepsy and neuropathic
pain (Huguenard and Prince, 1992; Perez-Reyes, 2003;
Bourinet and Zamponi, 2005). Specifically, T-type
calcium channel 3.2 has been identified as a promising
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target for novel analgesic drugs for pathologic pain
syndromes (Bourinet and Zamponi, 2005). A data base
of two million compounds was collected from various
commercial catalogs and filtered for drug-like quali-
ties, uniqueness, and standardization. The group used
ChemAxon’s PF and CGC GpiDAPHS3 fingerprints and
tested a subset of 38 unique hits biologically. Sixteen
hits showed more than 50% blockade of Cay3.2-
mediated T-type current. These compounds proved to
be an interesting collection of T-type calcium channel
blockers. Some showed reversible inhibition, whereas
others resulted in irreversible inhibition, and one of
the compounds caused alterations in depolarization/
repolarization kinetics (Ijjaali et al., 2007).

In addition to the enrichment of lead compound
population, fingerprints are also used to increase
molecular diversity of test compounds. Fingerprints
can be used to cluster large libraries of hits to allow the
sampling of a wide range of compounds without the
need to sample the entire library. In this case, fin-
gerprints are being used to optimize the sampling of
diversity space. The Jarvis-Patrick method that calcu-
lates a list of nearest neighbors for each molecule has
been shown to perform well for chemical clustering.
Two structures cluster together if they are in each
other’s list of nearest neighbors, and they have at least
K of their J nearest neighbors in common. The MDL
keys also provide a way to eliminate compounds that
are least likely to satisfy the drug-likeness criterion
(McGregor and Pallai, 1997).

2. Polypharmacology: Similarity Networks and Off-
Target Predictions. Recently, chemical similarity
measures such as Tanimoto coefficients are being used
to generate networks capable of clustering drugs that
bind to multiple targets in an effort to predict novel off-
target effects. Keiser et al. (2009) used a similarity
ensemble approach (SEA) (Keiser et al., 2007) to
compare drug targets based on the similarity of their
ligands. SEA predicts whether a ligand and target
will interact using a statistical model to control for
chemical similarity due to chance. Sets of ligands that
interact with each target are compared by calculating
Tanimoto coefficients based on standard 2D Daylight
fingerprints (Daylight Chemical Information Systems,
2013) for each pair of molecules between two sets.
Raw similarity scores between all pairs of ligand sets
are calculated as the sum of all Tanimoto coefficients
between the sets greater than 0.57. Because the
probability of achieving Tanimoto coefficients greater
than 0.57 increases with set size, this is normalized by
expected similarity due entirely to chance. This model
for random chemical similarity is achieved by ran-
domly generating 300,000 pairs of molecule sets
spanning logarithmic size intervals from 10 to 1000
molecules. Expectation scores are calculated based on
raw scores and the probability of achieving the raw
score by random chance and used to sequentially link
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ligand sets into a clustered map. Keiser et al. (2007,
2009) collected over 900,000 drug-target comparisons
from 65,241 ligands and 246 targets in the MDL Drug
Data Report data base (Schuffenhauer et al., 2002) to
generate a target similarity network. Another drug
data base, WOMBAT (Olah et al., 2005), included
interactions not listed in the MDDR data base, and
the authors tested the predictability of their networks
by searching their networks for interactions found in
WOMBAT but not MDDR. They found that 19% of the
off-target effects listed in WOMBAT but not in MDDR
were captured in their network. In addition to those
found in MDDR and WOMBAT, 257 additional drug-
target predictions were captured in their network,
184 of which had not been documented. The authors
tested 30 of these undocumented predictions using
radioligand competition assays and verified 23 inter-
actions with binding constants less than 15 uM. Some
of these interactions may help to explain well-known
side effects. For example, the authors discovered an
interaction between B-adrenergic receptors and selec-
tive serotonin reuptake inhibitors Prozac (fluoxetine)
and Paxil (paroxetine). This may explain the selective
serotonin reuptake inhibitors discontinuation syn-
drome seen with these drugs that are analogous to
discontinuation syndrome seen with B-blockers.
Lounkine et al. (2012) used the SEA approach
combined with adverse drug reaction (ADR) information
to generate a drug-target-ADR network. This network
was then used to predict off-target interactions that may
explain specific ADRs. The authors experimentally
tested 694 predictions and verified that 151 interactions
showed ICs¢ values less than 30 uM. The clinical
relevance of these off-target interactions was explored
through the enrichment of target-ADR pairs within their
network. For example, abdominal pain has been reported
for 45 drugs that interact with COX-1, and based on their
network, the ADR-target pair abdominal pain-COX-1
was enriched (represented in a greater degree within the
network than average) 2.3-fold, reflecting a predicted
correlation between abdominal pain and COX-1 interac-
tion. Another target-ADR correlation is predicted for
sedation and H1 interaction with an enrichment of 4.9.
3. Fingerprint Extensions. Current research focuses
improving fingerprint-based LB-CADD methods. As
mentioned, one drawback is that all features of a query
molecule are equally important for ranking candidate
molecules, regardless of any effect of these features on
the biologic activity at a target. Hessler et al. (2005)
proposed a method that combines the advantages of
similarity and pharmacophore searching on the basis
of 2D structural representations only. In their pro-
posed method, a set of query molecules is converted
into a topological model (MTree) based on chemically
reasonable matching of corresponding functional
groups. This creates a topological map of the most
similar fragments from a set of structurally diverse but
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active molecules, and conserved features are charac-
terized by high similarity scores of the corresponding
nodes in the MTree model (Hessler et al., 2005).
Because of the low dependence on chemical substruc-
tures, they argue that the MTree model is especially
useful for identification of alternative novel molecular
scaffolds or chemotypes. Methods for forming multiple
feature tree models and multiple feature tree scoring
schemes are also presented.

C. Quantitative Structure-Activity
Relationship Models

Quantitative structure-activity relationship (QSAR)
models describe the mathematical relation between
structural attributes and target response of a set of
chemicals (Zhang, 2011). Classic QSAR is known as the
Hansch-Fuyjita approach and involves the correlation of
various electronic, hydrophobic, and steric features with
biologic activity. In the 1960s, Hansch (1964) and others
began to establish QSAR models using various molec-
ular descriptors to physical, chemical, and biologic
properties focused on providing computational esti-
mates for the bioactivity of molecules. In 1964, Free
and Wilson (1964) developed a mathematical model
relating the presence of various chemical substituents
to biologic activity (each type of chemical group
was assigned an activity contribution), and the two
methods were later combined to create the Hansch/
Free-Wilson method (Free and Wilson, 1964; Tmej
et al., 1998).

The general workflow of a QSAR-based drug discov-
ery project is to first collect a group of active and
inactive ligands and then create a set of mathematical
descriptors that describe the physicochemical and
structural properties of those compounds. A model is
then generated to identify the relationship between
those descriptors and their experimental activity, max-
imizing the predictive power. Finally, the model is
applied to predict activity for a library of test compounds
that were encoded with the same descriptors. Success
of QSAR, therefore, depends not only on the quality of
the initial set of active/inactive compounds but also on
the choice of descriptors and the ability to generate the
appropriate mathematical relationship. One of the most
important considerations regarding this method is the
fact that all models generated will be dependent on the
sampling space of the initial set of compounds with
known activity, the chemical diversity. In other
words, divergent scaffolds or functional groups not
represented within this “training” set of compounds
will not be represented in the final model, and any
potential hits within the library to be screened that
contain these groups will likely be missed. Therefore,
it is advantageous to cover a wide chemical space
within the training set. For a comprehensive guide on
performing a QSAR-based virtual screen, please see
the review by Zhang (2011).
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1. Multidimensional QSAR: 4D and 5D Descriptors.
Multidimensional QSAR (mQSAR) seeks to quantify
all energy contributions of ligand binding including
removal of solvent molecules, loss of conformational
entropy, and binding pocket adaptation.

4D-QSAR is an extension of 3D-QSAR that treats each
molecule as an ensemble of different conformations, ori-
entations, tautomers, stereoisomers, and protonation
states. The fourth dimension in 4D-QSAR refers to the
ensemble sampling of spatial features of each molecule.
A receptor-independent (RI) 4D-QSAR method was
proposed by Hopfinger et al. (1997). This method begins
by placing all molecules into a grid and assigning in-
teraction pharmacophore elements to each atom in the
molecule (polar, nonpolar, hydrogen bond donor, etc.).
Molecular dynamic simulations are used to generate
a Boltzmann weighted conformational ensemble of each
molecule within the grid. Trial alignments are performed
within the grid across the different molecules, and
descriptors are defined based on occupancy frequencies
within each of these alignments. These descriptors are
called grid cell occupancy descriptors. A conformational
ensemble of each compound is used to generate the
grid cell occupancy descriptors rather than a single
conformation.

5D-QSAR has been developed to account for local
changes in the binding site that contribute to an
induced fit model of ligand binding. In a method de-
veloped by Vedani and Dobler (2002), induced fit is
simulated by mapping a “mean envelope” for all ligands
in a training set on to an “inner envelope” for each
individual molecule. Their method involves several
protocols for evaluating induced-fit models including a
linear scale based on the adaptation of topology, ada-
ptations based on property fields, energy minimization,
and lipophilicity potential. By using this information, the
energetic cost for adaptation of the ligand to the binding
site geometry is calculated.

2. Receptor-Dependent 3D/4D-QSAR. Although
QSAR methods are especially useful when structural
information regarding target binding site is not available,
QSAR methods that specifically include such information
have been developed. One method, known as free energy
force field 3D-QSAR trains a ligand-receptor force field
QSAR model that describes all thermodynamic contribu-
tions for binding (Pan et al., 2003). A 4D-QSAR version of
free energy force-field has also been developed to apply
this method to the RI-4D-QSAR methods described above
(Pan et al., 2003). Structurally, the analysis is focused
solely on the site of interaction between the ligand and
target, and all atoms of interest are assigned partial
charges. Molecular dynamic simulations are applied to
these structures to generate a conformational ensemble
following energy minimization. This approach avoids
any alignment issues present in the RI-4D-QSAR
method, because the binding site constrains the three-
dimensional orientations of the ligands. The conformation
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ensembles of receptor-ligand complexes generated are
placed in a similar grid-cell lattice as used in RI-4D-
QSAR, and occupancy profiles are calculated to generate
receptor-dependent 4D-QSAR models. When tested
alongside RI-4D-QSAR against a set of glucose analog
inhibitors of glycogen phosphorylase, predictability of
receptor-dependent 4D-QSAR models outperformed
those of RI-4D-QSAR (Pan et al., 2003).

3. Linear Regression and Related Methods.
Linear models used include multivariable linear re-
gression analysis (MLR), principal component analysis
(PCA), or partial least square analysis (PLS) (Acharya
et al.,, 2011). MLR computes biologic activity as
a weighted sum of descriptors or features. The method
requires typically 4 or 5 data points for every de-
scriptor used. PCA increases the efficiency of MLR by
extracting information from multiple variables into
a smaller number of uncorrelated variables. Analysis of
results is, however, not always straightforward (Wold
et al.,, 1987; Kubinyi, 1997). It can be applied with
smaller sets of compounds than MLR. PLS combines
MLR and PCA and extracts the dependent variable
(biologic activity) into new components to optimize
correlations (Zheng and Tropsha, 2000). PCA or PLS
are commonly used for developing models for the mo-
lecular interaction field algorithm CoMFA and CoM-
SIA (Acharya et al., 2011). Advantage of these models
is that they can be trained rapidly using the tools of
linear algebra. The major drawback is that chemical
structure often relates with biologic activity in a non-
linear fashion.

4. Nonlinear Models Using Machine Learning
Algorithms. Artificial neural networks (ANNs) are
one of the most popular nonlinear regression models
applied to QSAR-based drug discovery (Livingstone,
2008). These models belong to the class of self-
organizing algorithms in which the neural network
learns the relationship between descriptors and bi-
ologic activity through iterative prediction and im-
provement cycles (Acharya et al., 2011). A major
drawback of neural networks is the fact that they are
sensitive to overtraining, resulting in excellent per-
formance within the training set but reduced ability
to assess novel compounds. Therefore, care is taken to
always measure ANN performance on “independent”
datasets not used for model generation.

SVM is a kernel-based supervised learning method
that was introduced by Vapnik and Lerner (Vapnik and
Lerner, 1963; Boser et al., 1992). It is based on statistical
learning theory and the Vapnik-Chervonenkis dimension
(Blumer et al., 1989; Vapnik, 1999) and seeks to divide
sets of patterns (molecules described with descriptors)
based on their classification (biologic function). Once this
separation is performed on a training dataset, novel
patterns can be classified based on which side of the
boundary they fall. The simplest form of separation can
be imagined as a straight line down the center of a graph
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with the two classes clustered in opposite corners of the
graph. Because there are many different lines that can
be defined to separate these classes, SVM is described as
a maximal margin classifier as it seeks to define the
hyperplane with the widest margin between these two
classes. The patterns (compounds) that line the closest
border of each class define the two hyperplanes se-
parated by that margin. These patterns (molecules) are
known as support vectors and represent the maximal
margin solution and are used to predict classes for novel
unclassified patterns. All patterns that lie further from
these boundaries are not support vectors and have no
influence on the classification of novel patterns. Hyper-
planes defined by the lowest number of support vectors
are preferred. The solution is a parallel decision
boundary that lies equidistant from the two hyperplanes
defined by their respective support vectors (Ivanciuc,
2007; Boyle, 2011; Liang, 2011).

Ideally, the margin between hyperplanes contains no
patterns (molecules). However, to account for noise
within datasets and other issues that prevent a linear
solution from being reached, a soft-margin classifier is
used that allows for misclassification of some data and
the existence of patterns within the margin between hy-
perplanes. In this approach, a penalization constant can
be adjusted, with higher values stressing classification
accuracy and lower values providing more flexibility.

SVM was initially designed for datasets that could be
separated linearly. However, especially in CADD
application, this is not always possible. Therefore,
SVM incorporated a high-dimensional space in which
linear classification was once again possible. This
involves the preprocessing of input data using feature
functions where the input variables are mapped into a
Hilbert space of finite or infinite dimension (Ivanciuc,
2007). Although it cannot be predicted which feature
functions will allow for linear classification because
the input vector is mapped into higher space, this
becomes more possible. This strategy, however, must
be offset by the fact that higher dimensional space
creates more computational burden and contributes to
overfitting (Cristianini and Shawe-Taylor, 2000).

SVM utilizes kernel functions to ease the computa-
tional demand imposed by the existence of higher
dimensional data. These special nonlinear functions
combine the feature functions in a way that avoids
explicit transformation and preprocessing using feature
functions (Ivanciuc, 2007). In other words, the higher
dimensional space that allows for linear separation does
not need to be dealt with directly.

A kernel is essentially a function in which the
solution for two inputs is equal to the dot product of
their mapping from input space to Hilbert space. Based
on this fact, any novel kernels a researcher seeks to
develop must be a dot product in a mapped feature
space. This can be tested mathematically applying
Mercer’s condition (Cristianini and Shawe-Taylor,
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2000). The definition of new kernels, however, is not
usually necessary because multiple useful kernels have
already been well established for different problem
types. Which kernel is necessary for any given problem
cannot be predicted but is generally best selected a priori
by researching which kernels have been successfully
used in similar applications. It is not recommended to
select the best kernel based on performance with the
dataset being researched, because this can often lead to
overfitting and poor generalizability. Some of the most
commonly used kernels include the linear (dot) kernel,
used mainly as a test of nonlinearity and reference for
classification improvement after the application of non-
linear kernels; the polynomial kernel, which can be ad-
justed based on its degree to allow for larger feature
space; radial basis function kernel; analysis of variance
kernel; Fourier series kernel; spline kernel; additive
kernel; and tensor product kernel. Addition, multiplica-
tion, and composition of these kernels all result in valid
kernels (Ivanciuc, 2007). When implementing a novel
kernel function, however, the researcher must ensure
that it is the dot product in a feature space for some
mapping. This condition can be tested by applying
Mercer’s condition (Cristianini and Shawe-Taylor,
2000). It should be considered, however, that overfitting
can be induced with more complex kernel functions.

Several methods of SVM optimization have been
considered. SVM parameter optimization is accom-
plished by solving the quadratic programming problem
with a termination condition called the Klarush-Kuhn-
Tucker condition that defines when parameters are at
their minima. This can be computationally demanding
and difficult to implement. Therefore, decompositional
methods have been used to discard all zero parameters
(Vapnik, 2006). The sequential minimization optimi-
zation algorithm is a commonly used alternative
introduced by Platt (1999). This method breaks the
overall quadratic programming problem into subpro-
blems and solves the smallest possible optimization
problem at every stop involving only two parameters.
One problem with the sequential minimization opti-
mization, however, is that it can result in selection of
support vectors that include more than those necessary
for the optimal model. Researchers have found that
identical solutions can be achieved even after several of
these support vectors have been removed (Zhan and
Shen, 2005). Because the time needed to predict a
pattern classification with an SVM model is dependent
on the number of support vectors, it is beneficial to
eliminate unnecessary or redundant support vectors.
Zhan and Shen (2005) describe a four-step method for
removing unnecessary support vectors. Once the SVM
has completed training, the support vectors that
contribute to the most curvature along the hypersur-
face are removed. The SVM model is then retrained
and the hypersurface is further approximated with
a subset of support vectors.
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Decision tree learning is a supervised learning
algorithm that works by iteratively grouping the
training dataset into small and more specific groups.
The resulting classification resembles a tree in which
each feature is broken into different values and each of
these values is subsequently divided based on values of
a different feature. The order in which features are
divided is usually based on an information gain
(difference between information before and after the
branching) parameter with the highest valued features
appearing first (Mitchell, 1997; Han and Kamber,
2006). Various methods are used to sort the features,
with the overall goal of the smallest possible decision
tree providing the best performance. C4.5 is a widely
used decision tree algorithm that calculates informa-
tion gain based on information entropy (Quinlan, 1993;
Fukunishi, 2009). The information entropy of a given
classification that can divide the dataset into two
classes is calculated based on the number of com-
pounds in either class. The information entropy of the
system when dividing the dataset into two subsets
using a specific feature is calculated based on the
number of compounds from each class in either of the
feature subsets. Finally, the information gain for that
specific feature is calculated as the difference between
the information entropy of the classification and the
information entropy of the system.

Once the decision tree has been optimized for the
training set, new compounds can be classified by
applying their descriptors to the decision tree and
activities can be predicted based on which subset they
fall into and the activities of the training compounds
that are contained in that subset.

5. Quantitative Structure-Activity Relationship Ap-
plication in Ligand-Based Computer-Aided Drug
Design. QSAR has been used to screen for novel
therapeutics in the same way both pharmacophore
models and fingerprint similarity methods have been
applied to virtual libraries. Casafiola-Martin et al. (2007)
used Dragon (Talete S.R.L., Italy) software to define
descriptors for tyrosinase inhibitors. Tyrosinase is a
copper-containing enzyme that catalyzes two reactions in
the melanin biosynthesis pathway (Sanchezferrer et al.,
1995; Briganti et al., 2003). Altered melanin synthesis is
found in multiple disease states including hyperpigmen-
tation, melisma, and age spots. Additionally, this protein
has been implicated in dopamine neurotoxicity in dis-
eases such as Parkinson’s disease (Xu et al., 1997).
Descriptors were generated using a highly variable
training set of 245 active tyrosinase inhibitors and 408
inactive molecules. These descriptors include constitu-
tional, topological, BCUT, Galvez, topological charge, 2D
autocorrelations, and empirical properties and descrip-
tors. Seven models were created using linear discrimi-
nant analysis. In vitro testing revealed their most potent
inhibitor with an ICsq of 1.72 uM. This presents a more
potent inhibition of tyrosinase than the current reference
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drug L-mimosine (IC5¢9 = 3.68 uM) (Casanola-Martin
et al., 2007).

Mueller et al. (2012) used ANN QSAR models to
identify novel positive and negative allosteric modu-
lators of mGlu5. This receptor has been implicated in
neurologic disorders including anxiety, Parkinson’s
disease, and schizophrenia (Gasparini et al., 2008;
Conn et al., 2009). For the identification of positive
allosteric modulators, they first performed a traditional
high-throughput screen of approximately 144,000
compounds. This screen yielded a total of 1356 hits,
a hit rate of 0.94%. The dataset from this HTS was
then used to develop a QSAR model that could be
used in a virtual screen. To generate the QSAR
model, a set of 1252 different descriptors across 35 ca-
tegories was calculated using the ADRIANA (Molecular
Networks GmbH, Erlangen, Germany) software package.
The descriptors included scalar, 2D, and 3D descriptor
categories. The authors iteratively removed the least-
sensitive descriptors to create the optimal set. This final
set included 276 different descriptors, including scalar
descriptors such as molecular weight up to 3D descrip-
tors, including the radial distribution function weighted
by lone-pair electronegativity and 7 electronegativity. A
virtual screen was performed against approximately
450,000 commercially available compounds in the Chem-
Bridge data base. Eight hundred twenty-four compounds
were tested experimentally for the potentiation of mGlu5
signaling. Of these compounds, 232 were confirmed as
potentiators or partial agonists. This hit rate of 28.2%
was approximately 30 times greater than that of the
original HT'S, and the virtual screen took approximately
1 hour to complete once the model had been optimized
(Fig. 16) (Mueller et al., 2012).

In a separate study, Mueller et al. (2010) used
a similar approach to identify negative allosteric
modulators for mGlu5. Rodriguez et al. (2010) pre-
viously performed a traditional HTS screen of 160,000
compounds for allosteric modulators of mGlu5 and
found 624 antagonists. The QSAR model was used to
virtually screen over 700,000 commercially available
compounds in the ChemDiv Discovery data base. Hits
were filtered for drug-like properties, and fingerprint
techniques were used to remove hits that were highly
similar to known actives to identify new chemotypes.
Seven hundred forty-nine compounds were tested in
vitro, and 27 compounds were found to modulate
mGlub signaling. This hit rate of 3.6% was a significant
increase over the 0.2% hit rate of the traditional HTS
screen. The most potent of the compounds showed in
vitro ICsq values of 75 and 124 nM, respectively, and
contained a previously unidentified scaffold. After
analog synthesis and stability optimization, the experi-
menters tested the effect of their best lead in vivo
against two behaviors known to involve mGlu5:
operant sensation seeking behavior (Olsen et al.,
2010) and the burying of foreign objects in deep
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Fig. 16. QSAR-based virtual screening of mGlu5 negative allosteric
modulators yields lead compounds that contain substructure combina-
tions taken across several known actives used for model generation.
Adapted from Mueller et al. (2012).
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bedding (Deacon, 2006). Both behaviors were found to
be inhibited given intraperitoneal administration of
their lead analog.

In addition to predicting the behavior of novel
compounds within a virtual library, QSAR has been
used to improve compound libraries used in traditional
HTS. Although many chemical libraries are con-
structed in a combinatorial manner, it was reported
that the chemical space covered by combinatorially
synthesized libraries is different from the chemical space
of known drugs and natural products. Because of this,
along with the overall chemical space estimated to be
more than 10%, it is critical to design HTS compound
collections to cover the widest possible space of drug-like
chemicals (Bohacek et al., 1996). QSAR can be used to
direct combinatorial library synthesis for constructing
libraries that will later be screened against targets of
a particular class or classes. This allows the researcher to
cover a wide range of chemical space that has been
enriched with compounds more likely to be hits for their
target of interest. This strategy has been used to create
several libraries directed at particular target types. For
example, Erickson et al. (2010) generated seven libraries
meant to be screened for kinase inhibitors. The group
initially generated a fragment library from over 1400
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known kinase inhibitors. Potential scaffold fragments
were identified using substructure and similarity search-
ing, and break points for fragment generation were
guided with structure-based pharmacophores. These
data were also used to train SVM-based QSAR models.
Compounds were generated from this fragment library,
and their activity was predicted using the QSAR model.
The final library included compounds predicted to have
some activity against kinase targets and showed good hit
rates against six different kinases. These compounds,
however, did not exhibit the desirable specificity, and the
authors suggested that more specific pharmacophores
may be necessary (Erickson et al., 2010). Rolland et al.
(2005) used a similar strategy to design a library that
could be screened with GPCR targets. They collected
binding profiles for 1939 compounds against 40 GPCR
targets and used this information to train a global QSAR
model. The model was used to screen for putative GPCR
active compounds within a library of 16,000 compounds.
Additionally, 50 focused libraries of 200 compounds each
were generated using medicinal-chemistry-based scaf-
folds guided by the QSAR model. The researchers found
significant hit rates within these libraries not only
among the original panel of GPCRs but against pre-
viously untested GPCR targets (Rolland et al., 2005).

QSAR has also been applied to de novo drug design
techniques when structural information regarding the
target is unknown. Descriptor and model generation is
performed and is used to score the de novo-generated
molecules in place of other structure-based scoring
techniques such as docking. Most commonly, com-
pound generation involves iterative algorithms in
which structures are repeatedly modified and their
biologic activities are estimated using QSAR models.
In the simplest case, modifications can be achieved by
randomly swapping parts of the structure such as
functional groups. Ligand-based de novo drug design,
however, is less practiced than structure-based de novo
design because of the inherent challenges of accurately
evaluating a new molecule in the absence of the
receptor structure. To address the challenge of scoring
the newly generated molecules, similarity based meth-
ods have been applied in addition to QSAR models
(Brown et al., 2004).

Feher et al. (2008) used five selective norepinephrine
reuptake inhibitors as a training set to generate 2200
molecules using a combination of structural similarity,
2D pharmacophore similarity, and properties to drive
the evolution. One of the top scoring compounds was
found to be highly active and has been selected as
a lead compound in a project at Neurocrine (Feher
et al., 2008).

Golla et al. (2012) applied QSAR-based methods to
the design of novel chemical penetration enhancers
(CPEs) to be used in transdermal drug delivery. This
group used a genetic algorithm to design novel CPEs. In
this paradigm, new molecules are generated based on
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crossover and mutation operations randomly applied to
candidates. All generated molecules are scored based on
the QSAR model, and predicted property values and the
highest scoring molecules are retained for new rounds
of evolution. Two hundred seventy-two CPEs were used
to both generate the QSAR model and provide seed
molecules for the genetic algorithm. The QSAR model
was created using sequential regression analysis and
heuristic analysis using CODESSA and contained a final
set of 40 descriptors that optimally predicted properties,
including skin penetration coefficient, logP, melting
point, skin sensitization, and irritation. The top scoring
molecules were validated experimentally for permeation
and toxicity using Franz Cell with porcine skin and
HPLC analysis as well as toxicity effects on human
foreskin fibroblasts and porcine abdominal skin. The
study resulted in the identification of 18 novel CPEs,
four of which showed minimal or no toxic effects (Golla
et al.,, 2012).

Hoeglund et al. (2010) used QSAR modeling com-
bined with synthetic optimization in a follow up to
their most potent hit from a 2008 in silico screen for
inhibitors of autotaxin. Autotaxin is an autocrine
motility factor and has been linked to cancer pro-
gression, multiple sclerosis, obesity, diabetes, Alz-
heimer’s disease, and chronic pain through the
production of lysophosphatidic acid (LPA) (Kawagoe
et al., 1997; Euer et al., 2002; Baumforth et al., 2005;
Boucher et al., 2005; Umemura et al.,, 2006; Inoue
et al., 2008). Analogs of the lead compound were tested,
and 4 of the 30 exhibited ICsg less than or equal to the
lead. The most potent compound showed 3-fold higher
affinity for autotaxin than the lead, whereas another
compound showed twofold higher affinity (Hoeglund
et al., 2010).

CoMFA and CoMSIA 3D-QSAR methods have also
been used to predict novel therapeutic compounds for
a variety of disease targets. Ke et al. (2013) generated
CoMFA and CoMSIA models using 66 previously
discovered pyrazole- and furanopyrimidine-based au-
rora kinase inhibitors (Coumar et al., 2009, 2010a,b).
Aurora kinase A is a serine/threonine kinase involved in
mitosis (Li et al.,, 2010) that has been shown to be
involved in various different forms of cancer (Agnese
et al., 2007; Fu et al., 2007). By using the model that
showed the best predictive performance, the group
synthesized a novel compound (compound 67). This com-
pound was tested in vitro and displayed an IC5q of 25 nM
against aurora kinase A. Additionally, compound 67
displayed antiproliferative activity with an IC5q of 23 nM
against the HCT-116 colon cancer cell line.

Chai et al. (2011) used 26 previously identified anti-
hepatitis B (HBV) compounds (Chai et al., 2006; Zhao
et al., 2006a,b) to generate CoMFA models based on
steric and electrostatic fields and CoMSIA models
based on steric, electrostatic, hydrophobic, and H-bond
acceptor fields. Three compounds were designed using
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these models and subsequently tested against replica-
tion of HBV DNA in HBV-infected 2.2.15 cells. The
most potent compound displayed an ICsq of 3.1 uM,
whereas the other two showed ICsy values of 5.1 and
3.3 uM. These compounds were comparatively more
potent than the control lamivudine, which displays an
IC50 of 994 M.

Jiao et al. (2010) generated CoMFA models using 38
styrylquinoline derivatives in an effort to understand
and design potential HIV integrase inhibitors. Their
model suggested that a bulky group near the carboxyl
group at C-7 in the quinolone ring may confer in-
creased inhibition. Additionally, the presence of an
H-bonding donor is favorable near the C-7 atom. On the
basis of these predictions, they designed several com-
pounds that were tested against purified HIV Integrase
to determine inhibitory activity on the strand transfer
reaction of integrase. Four of these compounds showed
higher inhibitory activity than their positive control
baicalein (Sigma-Aldrich, St. Louis, MO).

Over the past several decades, over 18,000 QSAR
models have been reported for a variety of targets with
a variety of descriptors. C-QSAR was used to generate
a comprehensive database of QSAR models (Kurup,
2003). This collection has provided not only access to
models for novel applications, but allows the analysis
of QSAR models to identify challenges for the field.
Kim (2007) examined the C-QSAR data base for outlier
patterns, i.e., compounds that showed poor prediction
when the average prediction for the model was good.
They found that of over 47 QSAR models examined, the
number of compounds scoring as outliers ranged from 3
to 36%. Twenty-six of the 47 datasets showed 20% or
more compound outliers (Kim, 2007). They presented
several theories as to why QSAR models are so
sensitive to the generation of outliers. One possibility
came from analysis of the RCSB protein databank
(RCSB 2013) where they discovered examples where
related analogs were shown to bind in very different
poses. Another explanation offered was protein flexibil-
ity, leading to multiple binding modes and or binding
sites on the same protein. These different binding
modes/sites may reflect different structure-activity
relationships for molecules within a given dataset. In
other words, analogous compounds that do not share
the same binding mode can present difficulties in the
classifications of ligands (Kim, 2007).

D. Selection of Optimal Descriptors/Features

Hristozov et al. (2007) analyzed the performance of
different descriptors across a range of benchmarking
datasets and found that the performance of a particular
descriptor was often dependent on the activity class. It
was found that topological autocorrelation usually
offers the best dimensionality/performance ratio. The
fusion of the ranked lists obtained with RDF codes and
2D descriptor improved results because RDF codes,
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while giving similar results, covered different parts of
the activity spaces under investigation (Hristozov et al.,
2007). As a result, it is not possible to choose a small
optimal set of descriptors independent of the problem;
a custom-optimized descriptor set is needed for optimal
performance of LB-CADD.

Excessive numbers of descriptors or features can add
noise to a model, reducing its predictive power. Feature
selection techniques remove unnecessary features to
minimize the number of degrees of freedom of the
model. Thus, the ratio of data points versus degrees of
freedom increases, leading to models of increased
predictive power. Techniques that have proven suc-
cessful in QSAR modeling include selecting features by
measures such as information gain (Kent, 1983) and
F-score (Chen and Lin, 2006), sequential feature for-
ward selection or feature backward elimination (Mao,
2004), genetic algorithm (Davis, 1991; Goodarzi et al.,
2009), swarm optimization (Goodarzi et al., 2009), and
input sensitivity analysis (Mueller et al., 2010).

Information gain measures the change of informa-
tion entropy from the data distribution of two classes
(active and inactive compounds) of one feature com-
pared with the entropy of the feature overall. Thus,
discriminatory power of the individual feature in-
creases with information gain. An F-score is calculated
that considers the mean and standard deviation of
each feature across data classes. The higher the f-score
value, the greater discriminatory power of that feature.
Selecting features by individual benchmarks has the
disadvantage that correlation between features is
ignored. For example, let us assume a feature has
a high information gain. However, if a second feature
highly correlated is already part of the model, no im-
proved model will result from adding the feature.
More complex feature selection schemes address this
limitation:

Sequential feature forward selection is a determinis-
tic, greedy search algorithm. In each round, the best
feature set from the previous round N appends a single
feature from the pool of M remaining features and
trains the M models using the N + 1 features. The best
performing feature set from this round then advances
to the next round. This continues until all features are
used in a final feature set. The best performing model
over all iterations is then chosen as the best feature
set. This process is time consuming and not guaranteed
to yield the optimal feature set; the single best per-
forming feature will always be part of the model.
However, there is no guarantee that it is needed. Feature
backward elimination inverts the process starting from
a model trained from all features, eliminating one after
the other. Although the process is more robust in terms
of identifying the optimal model, it also requires sub-
stantial computer time. Therefore, alternative approaches
have been explored to optimize feature sets.
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Genetic algorithms mimic the process of evolution to
create an efficient search heuristic. This method uses
a population of individuals (distinct feature sets) to
encode candidate solutions. The initial individuals can
be generated randomly. In each iteration, or genera-
tion, the fitness of each individual is evaluated, i.e., the
predictive power of the derived LB-CADD model. This
fitness function is the performance metric of a model
trained using that individual as the feature set. Indi-
viduals are then selected based on the fitness and
undergo recombination and/or mutation to form the next
generation. The algorithm continues until a desired
fitness score is achieved or a set number of generations
has been completed.

Swarm optimization algorithms, such as ant colony
optimization (Zhou et al., 2012), particle swarm optimi-
zation, and artificial bee colony optimization (Lv et al.,
2012), are optimization techniques based on the orga-
nized behavior of social animals such as birds. The
algorithm iteratively searches for a best solution by
moving individuals around the search space guided by
both the local best solution as well as the best solutions
found so far in the entire population. The best overall
solution is constantly updated, letting the swarm
converge toward the optimal solutions.

Input sensitivity analysis seeks to combine speed of
individual benchmark values with accuracy of methods
that take correlation into account. First, a model is
constructed using all features. Next, the influence of
each feature on the model output is determined: Each
feature x; is perturbed, and the change in output y is
computed. This procedure numerically estimates the
partial derivative of the output with respect to each
input, a measure that is effective in selecting optimal
descriptor sets (Mueller et al., 2010).

E. Pharmacophore Mapping

In 1998, the International Union of Pure and
Applied Chemistry formally defined a pharmacophore
as “the ensemble of steric and electronic features that
is necessary to ensure the optimal supramolecular in-
teractions with a specific biological target structure
and to trigger (or to block) its biological response”
(Wermuth, 2006). In terms of drug activity, it is the
spatial arrangement of functional groups that a com-
pound or drug must contain to evoke a desired biologic
response. Therefore, an effective pharmacophore will
contain information about functional groups that in-
teract with the target, as well as information regarding
the type of noncovalent interactions and interatomic
distances between these functional groups/interactions.
This arrangement can be derived either in a structure-
based manner by mapping the sites of contact between
a ligand and binding site or in a ligand-based approach.
The former can be achieved by analyzing one or several
cocrystal structures with lead or drug compounds bound
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and will not be discussed in more detail here. We focus
on the latter, more challenging problem.

To generate a ligand-based pharmacophore, multiple
active compounds are overlaid in such a way that
a maximum number of chemical features overlap
geometrically (Wolber et al., 2008). This can involve
rigid 2D or 3D structural representations or, in more
precise applications, incorporate molecular flexibility
to determine overlapping sites. This conformational
flexibility can be incorporated by precomputing the
conformational space of each ligand and creating a
general-purpose conformational model or conformations
can be explored by changing molecule coordinates as
needed by the alignment algorithm (Wolber et al., 2008).
For example, one popular pharmacophore-generating
software package, Catalyst (Accelrys, Inc., San Diego,
CA), uses the “polling” algorithm (Smellie et al., 1995) to
generate approximately 250 conformers that it uses in
its pharmacophore generation algorithm (Acharya et al.,
2011). In a study targeting HSP90«, Al-Sha’er and Taha
(2010) used 83 known reference molecules to generate
pharmacophore queries and identified 25 diverse inhib-
itors including three with ICsq values below 10 nM.

1. Superimposing Active Compounds to Create a
Pharmacophore. Molecules are commonly aligned
through either a point-based or property-based tech-
nique. The point-based technique involves superposing
pairs of points (atoms or chemical features) by mini-
mizing Euclidean distances. These alignment methods
typically use a root-mean-square distance to maximize
overlap (Poptodorov et al., 2006). Property-based align-
ment techniques, on the other hand, use molecular field
descriptors to generate alignments (Wolber et al., 2008).
These fields define 3D grids around compounds and
calculate the interaction energy for a specific probe at
each point. The distribution of interaction energies is
represented by Gaussian functions, and the degree of
overlap between Gaussian functions of two aligned com-
pounds is used as the objective scoring function to maxi-
mize alignment (Poptodorov et al., 2006). One popular
field generation method for property-based alignments is
GRID (Goodford, 1985).

Molecular flexibility is always an important consid-
eration when aligning compounds of interest, and
several approaches are used to most efficiently sample
conformational space. These approaches include rigid,
flexible, and semiflexible methods. Rigid methods re-
quire knowledge of the active conformation of known
ligands and align only the active conformations. This is
only applicable, however, when the active conformation
is known with confidence. Semiflexible methods begin
with pregenerated ensembles of static conformations to
overlay, and flexible methods, being the most computa-
tionally expensive, perform conformational search dur-
ing the alignment process, often using molecular dynamics
or randomly sampling of rotatable bonds. Because
the conformational space can increase substantially
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with an increase in the number of rotatable bonds,
strategies are often used to limit the exploration of
conformational space through the use of reference
geometry (often an active ligand with low flexibility).
This method is known as the active analog approach
(Marshall et al., 1979).

2. Pharmacophore Feature Extraction. A pharmaco-
phore feature map is carefully constructed so as to
balance generalizability with specificity. A general de-
finition might categorize all functional groups having
similar physiochemical properties (i.e., similar hydrogen-
bonding behavior, ionizability) into one group, whereas
specific feature definitions may include specific atom
types at specific locations. More general feature defini-
tions increase the population of compounds that match
the pharmacophore. They allow the identification of
novel scaffolds but also increase the ratio of false-
positives. The level of feature definition generalizability
is usually determined by the algorithm used to extract
feature maps and through user-specified parameters.
The most common features used to define pharmaco-
phore maps are hydrogen bond acceptors and donors,
acidic and basic groups, aliphatic hydrophobic moieties,
and aromatic hydrophobic moieties (Acharya et al.,
2011). Features are commonly implemented as spheres
with a certain tolerance radius for pharmacophore
matching (Wolber et al., 2008).

3. Pharmacophore Algorithms and Software Packages.
The most common software packages used for ligand-
based pharmacophore generation include Phase
(Dixon, Smondyrev et al., 2006), MOE (Chemical
Computing Group, Quebec, Canada), Catalyst (Kurogi
and Giiner, 2001), LigandScout (Inte:Ligand, Vienna,
Austria), DISCO (Martin et al., 1993), and GASP
(Jones et al., 1995). These packages use different ap-
proaches to molecular alignment, flexibility, and feature
extraction. Catalyst approaches alignment and feature
extraction by identifying common chemical features
arranged in certain positions in three-dimensional
space. These chemical features focus on those expected
to be important for interaction between ligand and
protein and include hydrophobic regions, hydrogen-bond
donors, hydrogen-bond acceptors, positive ionizable, and
negative ionizable regions. Chemical groups that par-
ticipate in the same type of interaction are treated as
identical. Catalyst contains two algorithms that can be
used for pharmacophore construction. HipHop is the
simpler of the two algorithms and looks for common 3D
arrangements of features only for compounds with a
threshold activity against the target. It begins with best
alignment of only two features (scored by RMS devia-
tions) and continues expanding the model to include
more features until no further improvements are
possible. This method is only capable of producing a
qualitative distinction between active and inactive pre-
dictions. HypoGen, on the other hand, uses biologic
assay data such as ICsqg values for active compounds as

Sliwoski et al.

well as a set of inactive compounds. Initial pharmaco-
phore construction in HypoGen is identical to HipHop
but includes additional algorithms that incorporate
inactive compounds and experimental values. These
algorithms compare the best pharmacophore from the
"HipHop" stage with the inactive compounds and features
common to the inactive set are removed. Finally,
HypoGen performs an optimization routine that attempts
to improve the predictive power of the pharmacophore by
making adjustments and scoring the accuracy in predict-
ing the specific experimental activities (Giner, 2000;
Kurogi and Guner, 2001). This results in models that
are capable of quantitative predictions that can predict
specific levels of activity. Ten different models are
created following a simulated annealing optimization
(Chang and Swaan, 2006). Both Catalyst methods
incorporate molecular flexibility by storing compounds
as multiple conformations per molecule. The Poling
algorithm published by Smellie et al. (1995) is used to
increase the conformational variation within the set of
conformations per molecule. This allows Catalyst to
cover the greatest extent of conformational space while
keeping the number of conformations at a minimum.

Phase approaches alignment and feature extraction
using a tree-based partitioning algorithm and an RMS
deviation-based scoring function that considers the
volume of heavy atom overlap. It incorporates molec-
ular flexibility through a preparation step where confor-
mational space is sampled using a Monte Carlo or
torsional search (Poptodorov et al., 2006).

DISCO regards compounds as sets of interpoint
distances between heavy atoms containing features of
interest. Alignments are based on the spatial orientation
of common point among all active compounds. DISCO
considers multiple conformations that have been pre-
specified by the user during the alignments and uses
a clique-detection algorithm for scoring alignments
(Giiner, 2000).

GASP uses a genetic algorithm with iterative gen-
erations of the best models for pharmacophore con-
struction (Jones et al.,, 1995). Flexibility is handled
during the alignment process through random rotations
and translations. Conformations are optimized by
fitting them to similarity constraints and weighing the
conformations that fit these constraints more than
conformations that do not (Chang and Swaan, 2006).

Different software packages can produce different
results for the same datasets, and their strengths
and weaknesses should be considered prior to any
application. For example, Catalyst only permits a single
bonding feature per heavy atom, whereas LigandScout
allows a hydrogen-bond donor or acceptor to be
involved in more than one hydrogen-bonding interac-
tion (Wolber et al., 2008). MOE, on the other hand,
allows a more customizable approach to hydrogen-
bonding features. Lipophilic areas are generally repre-
sented as spheres located on hydrophobic atom chains,
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branches, or groups in a similar manner across software
packages but with slight nuances. Although subtle,
these differences have important consequences on pre-
diction models. Additionally, software packages that do
not attach a hydrophobic feature to an aromatic ring are
unable to predict that an aromatic group may be
positioned in a lipophilic binding pocket (Wolber et al.,
2008). The level of customizability also differs across
pharmacophore software packages and can influence
predictions. Catalyst allows the specification of one or
more chemical groups that satisfy a particular feature,
whereas Phase allows not only matching chemical
groups but also a list of exclusions for a given feature.
MOE offers a level of customization that allows the user
to implement entirely novel pharmacophore schemes
as well as modification of existing schemes. However,
this requires additional levels of expertise to program
(Wolber et al., 2008). For a comprehensive analysis of
the differences between commercial pharmacophore
software packages, please see the 2008 review by
Wolber et al. (2008) and a 2002 comparison of Catalyst,
DISCO, and GASP by Patel et al. (2002).

Ligand-based pharmacophore methods have been
used for the discovery of novel compounds across
a variety of targets. New compounds can have activity
in the micromolar and nanomolar range and reflect
proof of concept with in vivo disease models. Al-Sha’er
and Taha (2010) used a diverse set of 83 known Hsp90-
a inhibitors and the HypoGen module of Catalyst to
generate a pharmacophore model. Hsp90-« is a molec-
ular chaperone that is involved in protein folding,
stability, and function (Prodromou and Pearl, 2003). By
interacting with many oncogenic proteins, it has been
shown to be a valid anticancer drug target (Chiosis
et al., 2006; Solit and Rosen, 2006). The pharmaco-
phore model was used to screen the NCI list of
compounds (238,000) using the “best flexible” search
option. The top 100 hits were evaluated in vitro, and
their most potent compound had an IC5, of 25 nM (Al-
Sha’er and Taha, 2010).

Schuster et al. (2011) used three steroidal inhibitors
and two nonsteroidal inhibitors of 178-HSD3 and
Catalyst to create a pharmacophore model that was
used to screen for novel 178-HSD3 inhibitors. Hydrox-
ysteroid dehydrogenases (HSD3) catalyze the oxidor-
eduction of alcohols or carbonyls and the final step in
male and female sex hormone biosynthesis. Therefore,
these enzymes are suggested therapeutic targets for
control of estrogen- and androgen-dependent diseases
such as breast and prostate cancer, acne, and hair loss
(Poirier, 2009). Eight commercial data bases were
screened, and the 15 top scoring hits were tested in
vitro at 2 uM; five were verified to be inhibitors of 173-
HSD3. The most potent compound was able to inhibit
178-HSD3 by 67.1% at 2 uM (Schuster et al., 2011).

Noha et al. (2011) developed 5-point pharmacophore
models using the HipHop algorithm of Catalyst based
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on a training set of compounds with IC5y < 100 nM
against IKK-B as potential anti-inflammatory and
chemosensitizing agents. The authors used 128 active
and 44 inactive compounds to develop a pharmacophore
model (Noha et al., 2011). Their model was further
refined with exclusion volume spheres and shape
constraints to improve the scoring of compounds in their
virtual high-throughput screen against the National
Cancer Institute molecular data base. Ten compounds
were selected, and the most potent compound
(NSC719177, C26H31NO4) showed inhibitory activity
against IKK-8 in a cell-free in vitro assay with ICsq of
6.95 uM. Additionally, this compound inhibited NF-<B
activation induced by tumor necrosis factor-a in HEK293
cells with an ICsq of 5.85 uM (Noha et al., 2011).

Chiang et al. (2009) used the HypoGen module of
Catalyst to generate four-feature pharmacophore mod-
els based on an indole series of 21 compounds that
showed antiproliferative activity through the inhibi-
tion of tubulin polymerization/microtubule depolymer-
ization. Disruption of microtubules during the mitotic
phase of the cell cycle can induce cell-cycle arrest and
apoptosis (Valiron et al., 2001). Therefore, inhibitors of
tubulin polymerization are useful cancer treatments.
One hundred thirty thousand compounds of the Chem-
Div data base and in-house compound collection were
screened, and the top 142 hits were tested in vitro. Four
novel compounds were discovered with antiproliferative
activity. The most potent compound displayed antipro-
liferative activity in human cancer KB cells with an ICsq
of 187 nM. This compound also inhibited the pro-
liferation of other cancer cell types, including MCF-7,
NCI-H460, and SF-268, and demonstrated anticancer
effects in a histoculture system. In vitro assays revealed
that this compound inhibited tubulin polymerization
with an ICsg of 4.4 uM (Chiang et al., 2009).

Doddareddy et al. (2007) generated a pharmacophore
model containing three hydrophobic regions, one
positive ionizable center, and two hydrogen bond acceptor
groups for the identification of novel selective T-type
calcium channel blockers. The most potent hit showed an
ICsg of 100 nM (Annoura et al., 2002; Doddareddy et al.,
2007). T-type calcium channels are involved in rhythmical
firing patterns in the central nervous system and present
therapeutic targets for the treatment of epilepsy and
neuropathic pain ([jjaali et al., 2007).

Lanier et al. (2007) generated pharmacophores con-
taining five feature points using Catalyst and Combi-
Code (Deltagen Research Laboratories, San Diego CA)
software and an exclusion sphere generated in MOE
based on a training set of 100 active and 1000 inactive
compounds. This model was used to guide and evaluate
variations of a core molecule, leading them to a gonad-
otropin releasing hormone GnRH receptor antagonist
with receptor affinity below 10 nM (Lanier et al., 2007).
GnRH is involved in the regulatory pathways of follicle
stimulating hormone and luteinizing hormone. It is
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a target for disease therapeutics, including endometri-
osis, uterine fibroids, and prostate cancer (Cheng and
Leung, 2000; Huirne and Lambalk, 2001).

Roche and Rodriguez Sarmiento (2007) used known
H3 antagonists to generate a pharmacophore model with
four features including a distal positive charge, an
electron-rich position, a central aromatic ring, and either
a second basic amine or another aromatic. Histamine is
a central modulator in the central and peripheral ner-
vous systems through four receptors (H1-H4) (Hough,
2001). H3 is a presynaptic autoreceptor that modulates
production and release of histamine and other neuro-
transmitters (Alguacil and Perez-Garcia, 2003). H3
antagonists have been studied in Alzheimer’s disease,
attention deficit disorder, and schizophrenia (Witkin and
Nelson, 2004). Additionally, it has been suggested to be
involved in appetite and obesity (Hancock and Brune,
2005). This model was used in a de novo approach with
the Skelgen software (Stahl et al., 2002) to generate
novel compounds from fragment libraries that match the
pharmacophoric restraints. They found a series of four
compounds with high potency and selectivity for H3.
Their most potent compound showed inverse agonist
activity with an ECsq of 200 pM in a guanosine 5[prime]-
O-(3-thio)triphosphate functional assay and a binding
affinity K; toward H3 of 9.8 nM (Roche and Rodriguez
Sarmiento, 2007).

Chao et al. used (2007) pharmacophore-based design
to take advantage of the therapeutic benefits of indole-3-
carbinol (I3C) in the treatment of cancer. I3C is known
to suppress proliferation and induce apoptosis of various
cancer cells through the inhibition of Akt activation
(Howells et al., 2002; Li et al., 2005). I3C, however, has
a poor metabolic profile and low potency, likely due to
the fact that its therapeutic behavior comes from only
four of its metabolites. By overlaying these low-energy
conformers of these four metabolites, Chao et al. (2007)
was able to identify similar N-N’ distances and over-
lapping indole rings. This led them to design SR13650,
which showed an ICsq of 80 nM. Tumor xenograft
studies using MCF-7 cells revealed antitumor effects at
10 mg/kg for 30 days. Computational analysis was also
applied to increase the bioavailability, and three com-
pounds showed 45-60% tumor growth inhibition in vivo
compared with the 26% growth inhibition of SR13650.
SR13668 was the most potent compound and also dis-
played antitumor effects in other xenograft models. In
vitro, SR13668 was shown to inhibit Akt activation by
blocking growth-factor stimulated phosphorylation and
showed favorable toxicological profiles (Chao et al.,
2007). This drug is currently in phase 0 trials for the
treatment of cancer (Reid et al., 2011) (Fig. 17).

Dayam et al. (2008) used pharmacophore modeling
in an effort to identify novel HIV-1 integrase (IN)
inhibitors. IN is the third viral enzyme in HIV and
is responsible for integration of viral DNA into host
cell chromosomes through 3’-processing and strand
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Fig. 17. SR13668, an anticancer therapeutic was discovered using
ligand-based pharmacophore screening based on active components of
indole-3-carbinol. Adapted from Chao et al. (2007).

transfer (Gordon et al., 2007; Palmisano, 2007). This
model was created with the HipHop algorithm within
Catalyst and was based on the quinolone 3-carboxylic
acid class of IN inhibitors that show IC5, values ranging
from 43.5 to 7.2 nM and EC5, against HIV-1 replication
of 805 to 0.9 nM (Sato et al., 2006). The final
pharmacophore hypothesis consisted of four features
including a negatively ionizable feature, hydrogen-bond
acceptor, and two hydrophobic aromatic features (Fig.
18). Three hundred sixty-two thousand two hundred
sixty commercially available compounds were screened
and 56 selected for in vitro evaluation. Eleven of those
tested inhibited the IN catalytic activity with an ICsq
value < 100 uM. Five compounds had an ICxg less than
20 uM, and the most potent compound inhibited both
the 3’-processing (IC5¢ 14 uM) as well as strand transfer
activities (IC59 5 uM) of IN (Dayam et al., 2008).
Mugnaini et al. (2007) created a pharmacophore model
using 30 known inhibitors of the 3'-processing step of
HIV-1 IN and screened the ASINEX gold data base of
over 200,000 compounds for inhibitors of IN. Twelve
hits were tested in vitro and one compound was dis-
covered with a novel scaffold and anti-integrase activity
with ICs5o of 164 uM. Further improvement of this
compound yielded an analog with ICs¢ of 12 uM
(Mugnaini et al., 2007).

Noeske et al. (2007) used 2D-pharmacophore-based
virtual screening to identify novel mGlul antagonists.
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Fig. 18. (I, A) Novel HIV-1 Integrase inhibitor using ligand-based virtual screening with a pharmacophore model of quinolone 3-carboxylic acid IN
inhibitors [from Dayam et al. (2008)]. (B) Pharmacophore query generated from the quinolone 3-carboxylic acid IN inhibitors accompanied with an
overlay onto a known HIV-1 integrase inhibitor. Features are color-coded, and their 3D arrangement/distances are shown in angstroms. Green sphere
represent H-bond acceptor regions, blue spheres represent negatively ionizable regions, and cyan spheres represent hydrophobic aromatic regions. (II)
Pharmacophore query overlayed with 3 potent hits from the ligand-based virtual screen: compounds 8 (A), 9 (B), and 17 (C).

Antagonism of this receptor has been studied in regards
to therapeutic potential in neurodegenerative diseases,
anxiety, pain, and schizophrenia (Bordi and Ugolini,
1999; Spooren et al.,, 2003). Six reference mGlul an-
tagonists were used to construct 2D-pharmacophores
with the CATS software package (Schneider et al., 1999).
This software assigns all atoms in a compound as either a
hydrogen-bond donor, hydrogen-bond acceptor, positively
charged, negatively charged, lipophilic, or noninterest
atom type. Then, all compounds of a library are com-
pared with the distances between these different atom
types in the reference molecule, and similarity scores are
calculated to rank molecules that most closely fit this 2D-
pharmacophore. Screening the Gold Collection of Asinex
Ltd. yielded six different hit lists (one for each reference
molecule). The top hits were collected from all lists as
well as hits that appeared in three or more different lists,
and 23 compounds were tested experimentally for mGlul
antagonism. Their most potent compound yielded an

1C5g of 360 nM and was further optimized to a compound
with an ICs, of 123 nM.

IV. Prediction and Optimization of Drug
Metabolism and Pharmacokinetics Properties
Including Absorption, Distribution, Metabolism,
Excretion, and the Potential for
Toxicity Properties

In addition to high biologic activity and selectivity
for the target of interest, drug metabolism and
pharmacokinetics (DMPK) properties including absorp-
tion, distribution, metabolism, excretion, and the poten-
tial for toxicity (ADMET) in humans are critical to the
success of any candidate therapeutic. After lead discov-
ery or design, there is considerable attention given to
improving the compounds’ in vivo DMPK/ADMET
properties without losing its biologic activity. It is
common to apply some DMPK/ADMET-based restric-
tions early on in the discovery process to reduce the
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number of compounds necessary to evaluate and save
time and resources. Therefore, computational techniques
extend to predicting this very important aspect of drug
design and discovery. Methods used are structure-based
to study the interaction of candidate compounds with key
proteins involved in DMPK/ADMET and ligand-based to
predict of key properties using quantitative structure
property relation (QSPR) models.

A. Compound Library Filters

Computational tools are routinely used to filter large
data bases so that compounds predicted to have poor
DMPK/ADMET profiles may be avoided. One of the
earliest and still the most popular filters to apply to
any compound data base when performing a vHTS is
Lipinski’s rule of five. These rules are: (1) molecular
weight of 500 or less, (2) logP coefficient less than 5, (3)
5 or fewer hydrogen-bond donor sites, (4) 2x5 or fewer
hydrogen-bond accepting sites (Lipinski et al., 1997).
The rule set is based on an analysis of 2245 compounds
from the World Drug Index that had reached phase II
trials or higher. The rules were based on distributions
for molecular weight, logP, hydrogen bond donors, and
hydrogen bond acceptors for the top percentile of these
compounds (Lipinski et al., 1997). This set of rules
suggests the necessary properties for good oral bio-
availability (Lajiness et al., 2004) and reflects the
notion that pharmacokinetics, toxicity, and other adverse
effects are directly linked to the chemical structure of
a drug. Although this criteria is well established and
offers a relatively fast and simple way to apply DMPK/
ADMET filters before any sort of screening is per-
formed, it is incapable of predicting with any certainty
whether a compound will make an appropriate thera-
peutic. It has been estimated that almost 69% of
available compounds in the Available Chemical
Directory (ACD) Screening Database (2.4 million
compounds) and 55% of the compounds in the ACD
(240,000) do not violate this rule of 5 (Hou et al., 2006).
Accordingly, this rule set has always been intended to
be a guide and not necessarily a hard-set filter. It is
expected that such a simple rule of thumb will remove
lead compounds; for example, many peptidomimetics,
transporter substrates, and natural products will
violate Lipinski’s rule. Approximately 16% of oral
drugs violate at least one criterion and 6% fail two or
more criteria, and multiple examples exist of highly
successful drugs that fail one or more of Lipinksi’s
criteria including Lipitor and Singulair (Bickerton et al.,
2012). At the same time the Lipinski’s rule will not, for
example, recognize and remove compounds with struc-
tural features that give rise to toxicity. It is limited to
evaluating oral bioavailability through passive transport
only. When used to train models with machine learning,
Lipinski’s rule failed to provide better than random
classification of drugs and nondrugs (Frimurer et al.,
2000). Additionally, it is not designed to provide any
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discrimination beyond a binary pass or fail. Any com-
pound that violates two or more criteria is treated as an
equal fail, whereas any compound that does not is
treated as an equal pass.

On the basis of its shortcomings, several improve-
ments and replacements have been proposed for the rule
of 5. For example, two additional criteria have been
suggested that include the number of rotatable bonds
being less than or equal to ten and the polar surface area
being less than 140 A? (Veber et al., 2002). Bickerton
et al. (2012) introduced the quantitative estimate of
drug-likeness that is a score ranging from 0 (all pro-
perties unfavorable) to 1 (all properties favorable). This
score is taken as a geometric mean of individual de-
sirability functions, each of which corresponds to a dif-
ferent molecular descriptor. These descriptors include
molecular weight, logP, hydrogen bond donors and ac-
ceptors, rotatable bonds, aromatic rings, and the number
of structural alerts (Brenk et al., 2008).

However, the simple application of filters such as these
during a lead compound search can be problematic by
nature of the limitation of these descriptors and the
evolution of lead compound to drug. For example, Hann
et al. (2001) found that, on average over a set of 470 lead-
drug pairs, lead compounds had lower molecular weight,
lower logP, fewer aromatic rings, and fewer hydrogen-
bond acceptors compared with their eventual drugs.
Therefore, it can be problematic to apply filters designed
around the average properties of drugs to libraries that
are intended for the discovery of lead compounds.

Additionally, some of the properties used in these
filters can depend on conformation and environment.
Kulkarni et al. (2002) state that permeability and
hydrophobicity can change depending on the free energy
of solvation, interaction of the drug with a phospholipid
monolayer, and the drug’s flexibility. Vistoli et al. (2008)
state that hydrophobicity and hydrogen bonding are
both dependent on the dynamic nature of molecules and
that chemical information is limited without the use of
dynamic descriptors. For a comprehensive review on the
concept of drug likeness, please see the 2011 review by
Ursu et al. (2011).

The same computational tools used to predict activity
can be applied to predict a more detailed DMPK/
ADMET profile, including solubility, membrane perme-
ability, metabolism, interaction with influx/efflux trans-
porter proteins, interaction with transcription proteins,
and different aspects of toxicity. For example, QSAR-
based techniques have been especially important in
predicting the toxicology profiles for drugs very early on
in their development. These tools collect information
regarding known toxins such as carcinogens, neuro-
toxins, and skin irritating agents, and create statistical
models that can predict the likelihood that a particular
compound will reflect these undesirable properties
(Schnecke and Bostrom, 2006).
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B. Lead Improvement: Metabolism and Distribution

Aside from general filters applied to compound libraries
preceding a screen, computational tools can be used to
guide hit-to-lead optimization where a compound’s met-
abolic profile is fine tuned. This requires a precise
balancing act as the changes necessary to improve a
compound’s metabolic profile may also significantly
reduce its target affinity. During this stage of drug
development, efforts are made in changing the com-
pound’s structure not only to improve affinity but also
to improve its metabolism. Therefore, although com-
putational tools are useful in predicting the effects on
target affinity from any proposed changes to the lead
structure, they can be used in parallel to predict the
affinity and interactions the compound may have with
metabolizing enzymes and their regulators (Sun and
Scott, 2010). The metabolism of a drug can have
significant impacts not only on its bioavailability but
also on its half-life and generation of harmful metab-
olites. When metabolic stability is lowered, a drug can
lose its efficacy. Increasing stability can amplify harmful
side effects attributed to a long half-life. Physiologically,
there are two important phases in drug metabolism that
have been studied extensively. The phase I reactions
include hydrolysis, reduction, and oxidation and are
primarily performed by cytrochrome P450 enzymes.
Phase II reactions are more diverse and include glucur-
onidation, sulfation, acetylation, methylation, and gluta-
thione conjugation (Goldstein, 1974). These reactions
accelerate the drug’s elimination from the body but can
result in toxic products like highly reactive electrophiles
or free radicals (Sun and Scott, 2010).

Computational tools have been developed to address
the phase I metabolism reactions performed by cy-
trochrome P450 enzymes, mainly through docking and
QSAR procedures to predict the likelihood that a
particular compound will bind to a cytochrome P450.
At least 57 P450 isoforms exist in the human body, but
phase I metabolism is dominated by the isoforms 1A2,
2C9, 2C19, 2D6, and 3A4 (Ortiz de Montellano, 2005)
and computational methods are routinely directed
against these particular P450 isoforms. In addition to
the elimination of the drug and generation of metab-
olites, P450s can also be the source of drug-drug in-
teractions in that one drug can reduce the elimination
of another drug by blocking access to metabolizing
enzymes or can increase elimination by upregulating
expression of those enzymes. For example, in the early
development of CCR5 antagonists, experimenters dis-
covered hits that contained functional groups that are
common among CYP2D6 inhibitors. By modeling the
binding of these ligands to CYP2D6, imidazopyridines
were replaced with benzimidazoles so that possible
drug-drug interactions arising from inhibition of CYP2D6
were avoided early on (Armour et al., 2006).
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Structure-based methods are the most popular com-
putational tools for predicting the interaction between
a compound and P450 enzymes. Binding poses predicted
through docking studies may provide further insight
into the specific sites of metabolism within the com-
pound. For example, structure-based methods success-
fully predicted the metabolism of celecoxib and its 13
analogs through CYP2C9 (Ahlstrom et al., 2007a,b). In
addition to some P450 isoforms, X-ray structures of the
ligand-binding domain of prenane X receptor (Xue et al.,
2007), the transcription regulator of CYP3A4 (Yano
et al., 2004), glutathione S-transferases (Udomsinpra-
sert et al., 2005), and drug transporters such as P-
glycoprotein (Aller et al., 2009) have been determined.
Structural information about prenane X receptor and
drug transporters can be used to predict drug-drug
interactions through the induction of CYP3A4 or trans-
port channels.

One of the major challenges in modeling P450
binding is the dynamic nature of the binding site that
accommodates a wide variety of ligands. Another
challenge with docking studies involving P450 enzymes
is the fact that the goal is often fundamentally opposite
to that of most docking studies in that weaker binding is
usually preferred over stronger binding. Monte Carlo
and stochastic simulations of a wide variety of cocrystal
structures have allowed development of several dy-
namic models of P450 binding sites exploring the
different orientations amino acid side chains (Sun and
Scott, 2010). GOLD, FlexX, DOCK, AutoDock, and the
scoring function C-Score are most commonly used for
structure-based methods with P450 predictions (de
Graaf et al., 2005). For modeling the catalytic reaction
encountered when the ligand binds to the P450 enzyme,
ab initio calculations using Hartree-Fock or density
functional theory have been used (Sun and Scott, 2010).

For example, the formation of the hydroquinone
metabolite and electrophilic quinonone from remox-
ipride was calculated using hybrid density functional
theory. This information was then used to redesign
remoxipride (Erve et al., 2004). Density functional
theory calculations were used to eliminate the forma-
tion of reactive metabolites from a series of tyrosine
kinase-2 inhibitors. These calculations correctly pre-
dicted the necessary changes that avoided the formation
of these harmful metabolites (Sun et al., 2009). Park and
Harris (2003) used DFT on CYP2E1 homology models
along with docking and MD to predict the metabolism
profiles for seven compounds. Li et al. (2008) used
homology modeling and MD to dock ligands into CYP2J2
in an effort to describe the binding characteristics of this
enzyme. CYP2J2 is involved in the creation of eicosa-
trienoic acids from arachidonic acid. They were able to
identify key residues that were important for the sub-
strate specificity of CYP2J2. Additionally, they dis-
covered that different ligands, although sharing the
same scaffold, show different binding modes (Li et al.,
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2008). Bazeley et al. (2006) used structural information
of CYP2DG6 to identify invariant segments and performed
conformational sampling with MD. Combining this data
with neural-network based feature selection they found
that only three out of 20 conformations are relevant for
CYP2D6 binding. They also analyzed the docking of 82
compounds and showed that the most important at-
tributes that conferred a compound’s affinity for CYP2D6
was the number of hydrogen-bonding sites, molecular
weight, the number of rotatable bonds, AlogP, formal
charge, number of aromatic rings, and the number of po-
sitive atoms. With these findings, they were able to
achieve a prediction accuracy of 85% (Bazeley et al., 2006).

In addition to these structural methods, reactivity
rules are also used to predict the metabolism of small
molecules. Data bases such as Accelrys Metabolite
(Accelrys, 2013) contain curated metabolic transforma-
tions from the literature. This information can be used to
predict the various metabolic transformations that will
be produced from an input structure. META (Talafous
et al., 1994) is a model of mammalian xenobiotic meta-
bolism that incorporates metabolic data from literature,
textbooks, and monographs to define chemical trans-
formation rules called transforms, which can identify
and substitute functional groups. These focus on both
phase 1 and phase 2 metabolism.

Another method uses electronics and intramolecular
sterics to predict sits of CYP3A4 metabolism. This
approach focuses on the rate-limiting step of the hy-
droxylation by CYP3A4, namely the removal of the
hydrogen-atom (Shaik et al., 2002). The model assumes
that the susceptibility for removal depends mainly on
the electronic environment surrounding the hydrogen.
Therefore, the method calculates a hydrogen abstraction
energy for each hydrogen atom and this information is
used to predict sites of metabolism (Singh et al., 2003b).

SMARTCyp (Rydberg et al.,, 2010) is another rule-
based method that determines the reactivity of mo-
lecular fragments based on activation energies calculated
by quantum mechanical methods. It combines a reactiv-
ity descriptor and accessibility descriptor. The reactivity
descriptor estimates energy required for P450 metabo-
lism at a given site by looking up fragments in an energy
table for each atom. The accessibility descriptor is
a calculation that determines the 2D distance from the
center of the molecule a given atom is and always ranges
between 0.5 and 1.

The activation energy table used for the reactivity
descriptor combines 11 previously defined rules for
aliphatic, aromatic, and alkene carbon atoms for 50
carbon sites (Rydberg et al., 2009) with new data
generated by the authors. This produced a collection of
139 transition states that can represent different types
of P450 reactions.

Other aspects of a drug’'s DMPK/ADMET profile
that are predicted with computational tools include
membrane permeability, which is a large part of
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bioavailability as well as volume of distribution and
penetration of the blood-brain barrier and blood
plasma protein binding, involved in a drug’s volume
of distribution and effective plasma concentrations. The
evolution of predictive models for blood-brain barrier
penetration is reviewed in detail by Norinder and
Haeberlein (2002). Additionally, the structure of human
serum albumin is used to predict plasma protein
binding and volume of distribution changes (Davis and
Riley, 2004).

C. Prediction of Human Ether-a-go-go Rrelated
Gene Binding

The human ether-a-go-go related gene (hERG) pro-
tein is a voltage-gated potassium channel expressed in
the heart and nervous system. The tetramer has six
transmembrane spanning regions per protamer and is
important for repolarization during the cardiac action
potential (Mitcheson and Perry, 2003; Recanatini et al.,
2005; Sanguinetti and Tristani-Firouzi, 2006). The
delayed rectifier repolarizing current, an outward
potassium current comprised of a rapid and slow
component, is involved in plateau repolarization and
the configuration of the action potential. Alterations in
this channel’s conductance, especially blockade of the
channel, can lead to an altered refractory period and
action potential duration (Recanatini et al., 2005),
often resulting in what is known as drug-induced QT
syndrome and a severe cardiac side effect called
torsades de points (Hancox and Mitcheson, 2006).
The QT interval is the period of a cardiac cycle where
ventricular repolarization occurs (Sanguinetti and
Tristani-Firouzi, 2006), and drug-induced QT syn-
drome can lead to sudden death (Keating and Sangui-
netti, 1996). Because of its importance in the proper
regulation of cardiac action potential, off-target inter-
actions with hERG have caused several drugs to be
removed from the market and/or linked to arrhythmias
and sudden death (Mitcheson and Perry, 2003). hERG
has been termed an “antitarget” in the pharmaceutical
industry (Aronov, 2005). It has been estimated that 2—
3% of prescribed medications include some unintended
QT elongation (Recanatini et al., 2005). Although most
drugs have been shown to inhibit the rapid component
of the outward potassium current (Garg et al., 2008),
interaction between drugs and hERG is not completely
understood, and high-affinity ligands tend to interact
with the inactivated channel with low voltage-
dependency, whereas low-affinity ligands tend to
interact with the activated state with high voltage-
dependent kinetics (Ficker et al., 2002). However, key
residues involved in the interaction between hERG and
at least some ligands have been identified. For example,
Phe656 and Tyr652 in the channel pore may engage in
-7 and cation-7 interactions with the ligand. Thr623
and Ser624 are thought to interact with the polar tails
of some ligands and some evidence exists of a second
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binding site (Aronov, 2005; Recanatini et al., 2005; Choe
et al., 2006; Sanguinetti and Tristani-Firouzi, 2006). In
vitro and in vivo methods are commonly used to
evaluate drug candidates for potential hERG blockade
activity, especially patch clamp techniques and radio-
ligand binding assays (Wood et al., 2004; Polak et al.,
2009). However, these methods are difficult to scale
to high-throughput candidate evaluation, making the
computational approach attractive for this aspect of
drug discovery.

SB-CADD and LB-CADD have both been used to
develop models to discriminate hERG blockers and
nonblockers (Bridgland-Taylor et al., 2006; Thai and
Ecker, 2007). Currently, LB-CADD is more popular for
hERG predictions because of the fact that there is
currently no crystal structure for the hERG potassium
channel (Wang et al., 2012). Therefore, SB-CADD
techniques have mainly relied on docking with homology
models, and this method has not been validated with
large, highly diverse datasets (Wang et al.,, 2012). LB-
CADD-based hERG models have been created using tools
including ligand-based pharmacophore (Ekins et al.,
2002a; Cianchetta et al., 2005), CoMFA (Cavalli et al.,
2002), Bayesian classification with QSAR (Sun, 2006), and
2D fragment-based descriptors (Song and Clark, 2006).

Wang et al. (2012) developed discrimination models
based on molecular property descriptors and finger-
prints. Descriptors were calculated using Discovery
Studio molecular simulation package (Accelrys) and
included several variations on logP, molecular weight,
hydrogen-bonding, the number of rotatable bonds, rings,
and aromatic rings, the sum of oxygen and nitrogen
atoms, and fractional polar surface area. The finger-
prints included SciTegic extended-connectivity finger-
prints and Daylight-style path-based fingerprints using
the Morgan algorithm (Rogers and Hahn, 2010). Bayesian
classifiers and decision tree methods were used to create
models based on these descriptors.

Wang et al. (2012) analyzed the results of their
models and found that increased hydrophobicity was
correlated with increased hERG binding. Additionally,
molecular weight showed a significant, although lesser
impact on hERG binding, with molecules having a
molecular weight under 250 being less likely to be a
hERG blocker. Additionally, analysis of their finger-
prints revealed that most hERG-binding fragments con-
tained nitrogen atoms, with four of the top five containing
positively charged nitrogen atoms. These top five
fragments also contained at least one oxygen atom or
a carboxylic acid. Despite these correlations, the authors
stressed that no single molecular property can be used to
discriminate between hERG blockers and nonblockers.

Obrezanova and Segall (2010) used the Gaussian
process to build models for hERG inhibition as well as
other ADMET properties. The Gaussian process method
(Gibbs and MacKay, 2000; Rasmussen and Williams,
2006) is a nonlinear regression technique that is
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resistant to overtraining. It uses Bayesian inference to
link the descriptors of a molecule with the probability of
the molecule falling into a specific class. Eventually, a
posterior probability distribution is created over func-
tions that identify those that best describe the observed
data. The mean value over all functions can provide the
prediction, whereas the full distribution can provide
a measure of uncertainty for each prediction. The hERG
inhibitor model was trained on 117 active and 51
inactive compounds evaluated through patch clamp in
mammalian cells with descriptors generated in Star-
Drop’s Auto-Modeler (Obrezanova et al., 2008). These
2D descriptors were based on SMARTS and included
atom type counts, functionality, and molecular proper-
ties such as logP, molecular weight, and polar surface
areas. Datasets were also clustered using 2D finger-
prints and tanimoto similarity.

Nisius and Goller (2009) used the Tripos Topomer
Search technology (Cramer et al., 2002) to design a
modeling approach termed topoHERG. This method
screens reference datasets for molecules similar to a
query compound and returns pharmacophore and shape-
based distances between a query molecule and its
neighbors. The dataset contained 115 inactive com-
pounds, 90 moderately active hERG blockers, and 70
highly active hERG blockers. The topomer is defined
as a 3D representation of a molecular fragment that
is based on 2D topology and a rule set that generates an
absolute conformation (Jilek and Cramer, 2004) so that
distances between topomers of different molecules in
large data bases can be calculated. To differentiate be-
tween hERG active and inactive neighbors, the inverse of
the topomer search distance was multiplied by one if the
topomor search neighbor was active and negative one if it
was inactive. A molecule was predicted to be an active
hERG blocker if its overall sum was greater than zero. A
two-stage approach using two optimized models yielded
a prediction accuracy of 76-81% (Nisius and Goller, 2009).

Garg et al. (2008) used a genetic function approxi-
mation to generate quantitative structure-toxicity
relationship (QSTR) models using 2D descriptors gener-
ated using the QSAR+ module of Cerius (Accelrys).
These models were trained with 56 hERG blockers and
descriptors included electrotopological descriptors that
contained information regarding the topological environ-
ments for all atoms in the molecule as well as electronic
interactions with other atoms in the molecule. To per-
form genetic function approximation, the authors gener-
ated a number of random equations that were randomly
selected as pairs. These parent pairs underwent random
crossover operations to generate new equations, and
those that showed improved fitness scores were kept
(Rogers and Hopfinger, 1994). In parallel, the authors
generated a toxicophore (pharmacophore-based toxicity
model) using Catalyst’s HypoGen that included hydrogen-
bonding, hydrophobic, aromatic, and positive ionizable
features. Upon analysis of their models, the authors noted
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that both basic and neutral hERG blockers had highly
flexible linkers and various molecular fragments.

D. Drug Metabolism and Pharmacokinetics/
Absorption, Distribution, Metabolism, and Excretion
and the Potential for Toxicity Prediction Software
Packages and Algorithms

There is currently a great deal of models available
for predicting absorption, bioavailability, transporter
binding, metabolism, volume of distribution, and P450
interactions (Yoshida and Topliss, 2000; de Groot and
Ekins, 2002; Ekins et al., 2002a,b; Lewis, 2003; Pintore
et al., 2003; Turner et al., 2003; Lombardo et al., 2004).
Comprehensive software packages have been devel-
oped such as QikProp, which can be used to predict an
array of ADMET-related properties such as solubility,
membrane permeability, partition coefficients, blood-
brain barrier penetration, plasma protein binding, and
the formation of metabolites (Jorgensen and Duffy,
2002). These predictions mainly come from statistical
models such as regression and neural networks that
are trained on known ADMET properties for many
compounds. The OSIRIS Property Explorer allows scien-
tists to draw chemical structures and predict ADMET
profile (Mandal et al., 2009). The software package
MetaSite (Molecular Discovery Ltd, Middlesex UK) is
used to predict the site of metabolism using structural
information from both the ligand and the enzyme. A
probability function is created for the site(s) of me-
tabolism using the free energy of P450-ligand binding
and reactivity. This software uses structure-based
techniques to identify the relevant amino acids and
proposes compound modifications that can optimize
its metabolism profile (Cruciani et al., 2005). Ahl-
strom et al. (2007) proposed a three-step procedure
using MetaSite to identify metabolic sites, in silico
modification of these sites, and docking of new com-
pounds. These software packages aim at predicting
overall ADMET properties with convenient and ac-
cessible tools and have shown great benefit in drug
development. For example, computational modeling of
ADMET properties prevented a potential blood pressure-
lowering drug from being lost early in the development
process. The proposed compound showed low ECs;q
values, indicating that it was less potent than another
compound of consideration. However, pharmacokinetic
modeling showed that this compound would actually
have greater efficacy than the one that showed higher
potency. This compound did indeed show superior ef-
ficacy in the clinic (Rajman, 2008).

E. Drug Metabolism and Pharmacokinetics/
Absorption, Distribution, Metabolism, and Excretion
and the Potential for Toxicity: Clinical Trial
Prediction and Dosing

Computational tools are also being developed to
address the possibility of simulating early clinical
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trials to avoid the waste resources inherent in testing
drugs with poor ADMET profiles. This is a prevalent
problem in drug development because up to 90% of
drugs fail during clinical development, and the time
between reaching clinical trials and approval is up to
8 years (Holford et al., 2010). These simulations aim
at modeling the pathophysiology of biologic systems
and the pharmacology of treatments and can often
incorporate things such as disease progression, pla-
cebo response, and dropout rates.

For example, clinical trial simulation was used by Laer
et al. (2005) to propose appropriate doses for Sotalol
[CAS 959-24-0; N-[4-[1-hydroxy-2-[(1-methylethyl)ami-
nolethyllphenyllmethanesulfonamide hydrochloride] in
children and the Food and Drug Administration approved
dosing changes for Etanercept (Immunex Corporation,
Thousand Oaks CA) in juvenile rheumatoid arthritis
due to clinical trial simulations performed by Yim et al.
(2005). SimCYP (Simcyp Ltd, Sheffield UK) is a soft-
ware package that creates virtual populations of
participants with specifiable genetic and physiologic
characteristics using literature data. In vitro me-
tabolism data can be applied to the in vitro-in vivo
extrapolation process to simulate whole-live and hepatic
clearances for these virtual populations (Jamei et al.,
2009). Kowalski et al. (2008) used the NONMEM
software package (ICON ple, Dublin, Ireland) and
PK/PD modeling to suggest a dosing regimen for
SC-75416, a selective COX-2 inhibitor that would be
comparable to the pain relief afforded from 50 mg
of rofecoxib. This simulation saved an estimated
9 months of development.

V. Conclusions

The extensive variety of computational tools used in
drug discovery campaigns suggests that there are no
fundamentally superior techniques. The performance
of methods varies greatly with target protein, available
data, and available resources. For example, Kruger
and Evers (2010) completed a performance benchmark
between structure- and ligand-based vHTS tools across
four different targets, including angiotensin-converting
enzyme, cyclooxygenase-2, thrombin, and HIV-1 pro-
tease. Docking methods including Glide, GOLD, Sur-
flex, and FlexX were used to dock ligands into rigid
target crystal structures obtained from PDB. A single
ligand was used as a reference for ligand-based si-
milarity search strategies such as 2D (fingerprints and
feature trees) and 3D [rapid overlay of chemical
structures (ROCS; OpenEye Scientific Software, Santa
Fe, NM)], a similarity algorithm that calculates maxi-
mum volume overlap of two 3D structures (Rush et al.,
2005). In general the authors found that docking
methods performed poorly for HIV-1 protease and
thrombin attributable to the flexible nature of the
targets and the fact that the known ligands for these
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proteins have large molecular weight and peptidomi-
metic character.

Enrichments based on 3D similarity searches were
poor for HIV-1 protease and thrombin datasets com-
pared with ACE, which is likely due to the higher level
of diversity in the HIV-1 protease and thrombin ligand
datasets. Similarity scoring algorithms like Shape-
Tanimoto, ColorScore, and ComboScore were compared
with the performance of ROCS (Kruger and Evers,
2010). It was found that even within the scoring,
algorithm performance varied across targets. For ex-
ample, ColorScore performed best for ACE and HIV-1
protease, whereas ShapeTanimoto for COX-2 and
ComboScore was the method of choice for thrombin.
All vHTS tools performed comparatively well for ACE,
but ligand-based 2D fingerprint approach generally
outperformed docking methods. The authors also note
an important observation in that, especially for HIV-1
protease, the structure-based and ligand-based ap-
proaches yielded complimentary hit lists. Therefore,
performance metrics are not the only benchmark to
consider when comparing CADD techniques. In some
cases, discovery of novel chemotypes is more important
than high hit rates or high activity. In the current
study, Kruger and Evers (2010) found that ROCS
and feature trees were more successful in retrieving
compounds with novel scaffolds compared with other
fingerprints.

Warren et al. (2006) published an in-depth assess-
ment of the capabilities and shortcomings for docking
programs and their scoring techniques against eight
proteins of seven evolutionarily diverse target types.
They found that docking programs were well adept at
generating poses that included ones similar to those
found in complex crystal structures. In general, al-
though the molecular conformation was less precise
across docking programs, they were fairly accurate in
terms of the ligand’s overall positioning. With regards
to scoring, their findings agree with others that
docking programs lack reliable scoring algorithms. So
while the tools were able to predict a set of poses that
included those that were seen in the crystal structure,
the preference for the crystal structure pose was not
necessarily reflected in the scoring. For five of the
seven targets that were evaluated, the success rate,
however, was greater than 40%. It was found that the
enrichment of hits could be increased by applying
previous knowledge regarding the target. However,
there was little statistically significant correlation
between docking scores and ligand affinity across the
targets. The study concluded that a docking program’s
ability to reproduce accurate binding poses did not
necessarily mean that the program could accurately
predict binding affinities. This analysis underscores
the necessity not only to re-rank the top hits from
a docking-based vHTS using computationally expen-
sive tools but also to continue evaluating novel scoring

385

functions that can efficiently and accurately predict
binding affinities (Warren et al., 2006).

Improvements in scoring functions involve the use of
consensus scoring methods and free energy scoring
with docking techniques. Consensus scoring methods
have been shown to improve enrichments and pre-
diction of bound conformations and poses by balancing
out errors of individual scoring functions. In 2008,
Enyedy and Egan (2008) compared docking scores of
ligands with known IC5y and found that docking scores
were incapable of correctly ranking compounds and
were sometimes unable to differentiate active from
inactive compounds. They concluded that individual
scoring methods can be used successfully to enrich a
dataset with increased population of actives but are
insufficient to identify actives against inactives. Page
and Bates (2006) concluded that although binding
energy calculations such as MM-PBSA are one of the
more successful methods of estimating free energy of
complexes, these techniques are more applicable to
providing insights into the nature of interactions
rather than prediction or screening. Consensus scoring
functions where free energy scores of different algo-
rithms have been combined or averaged have been
shown to substantially improve performance (Fukunishi
et al., 2008; Teramoto and Fukunishi, 2008; Bar-Haim
et al., 2009; Plewczynski et al., 2011).

In their literature survey, Ripphausen et al. (2010)
reported that structure-based virtual screening was
used much more frequently than ligand-based virtual
screening (322 to 107 studies). Despite a preference for
structure-based methods, ligand-based methods on
average yield hits with higher potency than structure-
based methods. Most ligand-based hits had activities
better than 1 uM, whereas structure-based hits fall
frequently in the range of 1-100 wM. Scoring algorithms
in docking functions have been found to be biased to-
ward known protein ligand complexes; for example,
more potent hits against protein kinase targets are
discovered when compared with other target classes
(Stumpfe et al., 2012) (Fig. 19).

One CADD approach that has been gaining consider-
able momentum is the combination of structure-based
and ligand-based computation techniques (Nicolotti
et al., 2008). For example, the GRID-GOLPE method
docks a set of ligands at a common binding site using
GRID and then calculates descriptors for the binding
interactions by probing these docking poses with
GOLPE (Baroni et al., 1993). Multivariate regression
is then used to create a statistical model that can ex-
plain the biologic activity of these ligands. Structure-
based interactions between a ligand and target can
also be used in similarity-based searches to find com-
pounds that are similar only in the regions that
participate in binding rather than cross the entire
ligand. LigandScout uses such a technique to define a
pharmacophore based on hydrogen bonding and
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Fig. 19. Ripphausen et al. (2010) report that ligand-based computation-
ally approaches yield compounds with higher affinity than structure-
based computationally approaches. Adapted from Ripphausen et al.
(2010).

charge-transfer interactions between a ligand and its
target. Another technique known as the pseudoreceptor
technique (Tanrikulu and Schneider, 2008) uses phar-
macophore mapping-like overlaying techniques for a
collection of ligands that bind to the same binding site to
establish a virtual representation of the binding site’s
structure, which is then used as a template for docking
and other structure-based vHTS. This approach has
been used by VirtualToxLab (Vedani et al., 2007) for the
creation of nuclear receptors and cytochrome P450
binding site models in ADMET prediction tools and by
Tanrikulu et al. (2009). in the modeling of the H4
receptor binding site subsequently used to identify novel
active scaffolds (Tanrikulu et al., 2009). In a recent re-
view by Wilson and Lill (2011), these methods are
grouped into a major class of combined techniques
called interaction based methods. A second major class
involves the use of QSAR and similarity methods to
enrich a library of virtual compounds prior to a molec-
ular docking project. This can increase the efficiency of
the project by reducing the number of compounds to be
docked. This is similar to the application of CADD to
enrich libraries prior to traditional HTS projects. This
review also presents comprehensive descriptions of

6 Sliwoski et al.

software packages using a combination of ligand-
and structure-based techniques as well as several case
studies testing the performance of these tools.

As discussed earlier, these methods are often used in
serial where ligand-based methods are first used to
enrich libraries that will subsequently be used in
structure-based vHTS. The most common application
is at the ligand library creation stage through the use
of QSAR techniques to filter out compounds with low
similarity to a query compound or no predicted activity
based on a statistical model. QSAR has also been used
as a means to refine the docking scores of a structure-
based virtual screen. 2D and 3D QSAR can also be used
to track docking errors. This method has been used by
Novartis where a QSAR model is built from docking
scores rather than observed activities, and this model
is applied to that set to provide additional score weights
for each compound (Klon et al., 2004).

Although CADD has been applied quite extensively in
drug discovery campaigns, certain lucrative therapeutic
targets like protein-protein interaction and protein-DNA
interactions are still formidable problems, mainly be-
cause of the relatively massive size of interaction sites (in
excess of 1500 A%) (Van Drie, 2007). Lastly, accessibility
has also been a problem with CADD as many tools are
not designed with a friendly user interface in mind. In
many cases, there can be an overwhelming number of
variables that must be configured on a case-by-case basis
and the interfaces are not always straightforward. A
great deal of expertise is often required to use these tools
to get desired measure of success. Increasingly, efforts
are being made to develop user friendly interfaces, es-
pecially in commercially available tools. For example,
ICM-Pro (MolSoft L.L.C., San Diego, CA) is a software
package that is designed to be a user friendly docking
tool and replaces the front-end of current docking
algorithms with an interface that is manageable to
a wider audience (Abagyan et al., 2006). More recently,
gamification of the ROSETTA folding program, known
as Foldit (Khatib et al., 2011), has allowed individuals
from nonscientific community to help solve the struc-
ture of M-PMYV retroviral protease (Khatib et al., 2012)
and for predicting backbone remodeling of computa-
tionally designed biomolecular Diels-Alderase that
increased its activity (Eiben et al., 2012). The success-
ful application of crowd-sourced biomolecule design
and prediction suggests further potential of CADD
methods in drug discovery.
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