Valence and Core-Level Excited State Studies of Molecular Complexes and Materials

Niri Govind,

Pacific Northwest National Lab (PNNL), Environmental Molecular Sciences Laboratory, Richland, WA 99354

In this seminar recent and ongoing developments geared towards studying excited states with linear-response (LR) and real-time (RT) time-dependent density functional theory (TDDFT) will be presented. Over the last decade or so LR-TDDFT has emerged as the method of choice for the calculation of valence excited states of large molecular complexes and materials. However, the method is limited to the linear-response regime. In recent years, RT-TDDFT has begun to emerge as a very promising and computationally efficient approach to model ultrafast electron dynamics and properties that go beyond linear-response perturbations like strong laser pulses. In addition to being able to provide detailed time resolved information, RT-TDDFT can also be used to calculate the optical response of systems with high densities of states like transition metal oxides and large chromophores. I will cover our recent developments in this area and provide an outlook. Finally, recent and ongoing developments and applications in the calculation of pre and near-edge X-ray spectra of molecular complexes and materials will also be presented.